Nanostructure lipid carriers enhance alpha-mangostin neuroprotective efficacy in mice with rotenone-induced neurodegeneration.

Metab Brain Dis

Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan road, Jatuchak, 10900, Bangkok Bangkok, Thailand.

Published: June 2022

Neurodegenerative disease, for instance, Parkinson's disease (PD), is associated with substantia nigra dopaminergic neuronal loss with subsequent striatal dopamine reduction, leading to motor deficits. Currently, there is no available effective therapy for PD; thus, novel therapeutic agents such as natural antioxidants with neuroprotective effects are emerging. Alpha-mangostin (αM) is a xanthone derivative compound from mangosteen peel with a cytoprotective effect depicted in neurodegenerative disease models. However, αM has low aqueous solubility and low biodistribution in the brain. Nanostructured lipid carriers (NLC) have been used to encapsulate bioactive compounds delivered to target organs to improve the oral bioavailability and effectiveness. This study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration. Forty male ICR mice were divided into normal, PD, PD + αM, and PD + αM-NLC groups. Vehicle, αM (25 mg/kg/48 h), and αM-NLC (25 mg/kg/48 h) were orally administered, along with PD induction by intraperitoneal injection of rotenone (2.5 mg/kg/48 h) for 4 consecutive weeks. Motor abilities were assessed once a week using rotarod and hanging wire tests. Biochemical analysis of brain oxidative status was conducted, and neuronal populations in substantia nigra par compacta (SNc), striatum, and motor cortex were evaluated using Nissl staining. Tyrosine hydroxylase (TH) immunostaining of SNc and striatum was also evaluated. Results showed that rotenone significantly induced motor deficits concurrent with significant SNc, striatum, and motor cortex neuronal reduction and significantly decreased TH intensity in SNc (p < 0.05). The significant reduction of brain superoxide dismutase activity (p < 0.05) was also detected. Administrations of αM and αM-NLC significantly reduced motor deficits, prevented the reduction of TH intensity in SNc and striatum, and prevented the reduction of neurons in SNc (p < 0.05). Only αM-NLC significantly prevented the reduction of neurons in both striatum and motor cortex (p < 0.05). These were found concurrent with significantly reduced malondialdehyde level and increased catalase and superoxide dismutase activities (p < 0.05). Therefore, this study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice. We indicated an involvement of NLC, emphasizing the protective effect of αM against oxidative stress. Moreover, αM-NLC exhibited broad protection against rotenone-induced neurodegeneration that was not limited to nigrostriatal structures and emphasized the benefit of NLC in enhancing αM neuroprotective effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-022-00967-wDOI Listing

Publication Analysis

Top Keywords

snc striatum
12
lipid carriers
8
mice rotenone-induced
8
neurodegenerative disease
8
substantia nigra
8
motor deficits
8
striatum motor
8
motor cortex
8
motor
5
αm
5

Similar Publications

Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the brain, manifesting itself with both motor and non-motor symptoms. A critical element of this pathology is neuroinflammation, which triggers a harmful neurotoxic cycle, exacerbating cell death within the central nervous system. AD-16 (also known as GIBH-130) is a recently identified compound capable of reducing the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines in Alzheimer's disease models.

View Article and Find Full Text PDF

Dopaminergic neurons (DANs) in the lateral substantia nigra project to the tail of striatum (TS), which is involved in threat conditioning. Auditory cortex also contributes to threatening behaviors, but whether it directly interacts with midbrain DANs and how these interactions might influence threat conditioning remain unclear. Here, functional mapping revealed robust excitatory input from auditory and temporal association cortexes to substantia nigra pars lateralis (SNL) DANs, but not to pars compacta (SNc) DANs.

View Article and Find Full Text PDF

Effects of puerarin on gait disturbance in a 6-hydroxydopamine mouse model of Parkinson's disease.

Pharmacol Rep

October 2024

Department of Food Science and Nutrition, Daegu Catholic University, 13-13 Hayang-Ro, Hayang-Eup, Gyeongsan, Gyeongbuk, 38430, Republic of Korea.

Background: Parkinson's disease (PD) is a neurodegenerative disorder caused by dopamine (DA) neuronal dysfunction. Although DA agonists and N-methyl-D-aspartate receptor (NMDAR) antagonists are used to treat PD, chronic use causes severe side effects. Puerarin (PUE) is a natural bioactive compound that affects the DA system; however, its effect on PD-associated motor functions is unknown.

View Article and Find Full Text PDF

Loss-of-function mutations in the ATP13A2 (PARK9) gene are implicated in early-onset autosomal recessive Parkinson's disease (PD) and other neurodegenerative disorders. ATP13A2 encodes a lysosomal transmembrane P-type ATPase that is highly expressed in brain and specifically within the substantia nigra pars compacta (SNc). Recent studies have revealed its normal role as a lysosomal polyamine transporter, although its contribution to PD-related pathology remains unclear.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disease, and it is caused by the loss of dopaminergic neurons in the basal ganglia (BG). Currently, there is no definite cure for PD, and available treatments mainly aim to alleviate its symptoms. Due to impaired neurotransmitter-based information transmission in PD, molecular communication-based approaches can be employed as potential solutions to address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!