Electrophoretic Mobility of a Water-in-Oil Droplet Separately Affected by the Net Charge and Surface Charge Density.

Langmuir

Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan.

Published: April 2022

Water-in-oil emulsions and droplets exhibit physicochemical properties completely different from those of oil-in-water emulsions and droplets. Thus, directly applying a standard theoretical model to water-in-oil systems cannot describe these anomalous properties. Here, the electrophoretic mobility of a water-in-oil droplet is analytically investigated using Debye-Hückel linearization and neglecting the Marangoni effect. The resulting electrophoretic mobility is shown to be separately dependent on the net charge of the droplet and the surface charge density at the droplet interface. Furthermore, when the net charge is negligible, the electrophoretic mobility is proportional to the surface charge density with a negative coefficient. This indicates that the internal electric double layer inversely contributes to the electrophoresis. This theory is applied to experimental data of water-in-oil emulsions and droplets in the literature, and qualitative and quantitative verification of the theory is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c03145DOI Listing

Publication Analysis

Top Keywords

electrophoretic mobility
16
net charge
12
surface charge
12
charge density
12
emulsions droplets
12
mobility water-in-oil
8
water-in-oil droplet
8
water-in-oil emulsions
8
charge
6
water-in-oil
5

Similar Publications

Background: Several studies suggested the genetic association between IL10RA variants and susceptibility to Behcet's disease (BD). However, the precise mechanism of the association is still unknown. The purpose of this study was to investigate the mechanism underlying the genetic associations between IL10RA polymorphisms and the risk of BD.

View Article and Find Full Text PDF

Protein glycosylation has been considered as a fundamental phenomenon shared by all domains of life. In , glycosylation of flagellins A and B with pseudaminic acid have been rigorously confirmed and shown to be essential for flagella assembly and bacterial colonization. In addition to flagellins, several other proteins including RecA, AlpA/B, and BabA/B in have also been reported to be glycosylated and to be dependent on the lipopolysaccharide (LPS) biosynthetic pathway.

View Article and Find Full Text PDF

Streptococcus suis (S. suis) is a major pathogen in swine and poses a potential zoonotic threat, which may cause serious diseases. Many toxin-antitoxin (TA) systems have been discovered in S.

View Article and Find Full Text PDF

SPD_0410 negatively regulates capsule polysaccharide synthesis and virulence in D39.

Front Microbiol

January 2025

Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders and Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, China.

capsular polysaccharide (CPS) is a crucial virulence factor for this pathogenic bacterium and is partially under transcriptional control. In this study, we used electrophoretic mobility shift assays and DNA enzyme footprinting to identified the hypothetical protein SPD_0410 as a negative regulator of locus. Our results showed that the D39Δ mutant strain exhibited significantly elevated CPS levels compared to the parental strain D39s.

View Article and Find Full Text PDF

ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.

Plant Cell Environ

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.

Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!