Objectives: To evaluate the mechanical, physicochemical, and antimicrobial properties of four different formulations containing micro- or nanoparticles of sodium trimetaphosphate (mTMP and nTMP, respectively).

Methodology: Four experimental groups were used in this investigation: two mTMP groups and two nTMP groups, each containing zirconium oxide (ZrO2), and solution containing either chitosan or titanium oxide (TiO2) nanoparticles (NPs). Setting time, compression resistance, and radiopacity were estimated. The agar diffusion test was used to assess the antimicrobial activity of the formulations against five different microbial strains: Streptococcus mutans, Lactobacillus casei, Actinomyces israelii, Candida albicans, and Enterococcus faecalis. Parametric and nonparametric tests were performed after evaluating homoscedasticity data (p<0.05).

Results: From the properties evaluated, nTMP cements required less setting time and showed greater resistance to compression. Cements containing TiO2 showed greater radiopacity for both nTMP and mTMP. All four cement formulations showed antimicrobial activity against S. mutans and L. casei.

Conclusion: Formulations containing nTMP have shorter setting times and higher compressive strength, and those with TiO2 nanoparticles showed antimicrobial activities. Clinical relevance: The cement containing nTMP, ZrO2, and TiO2 could be an alternative material for protecting the pulp complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963389PMC
http://dx.doi.org/10.1590/1678-7757-2021-0483DOI Listing

Publication Analysis

Top Keywords

sodium trimetaphosphate
8
antimicrobial properties
8
novel pulp
4
pulp capping
4
capping material
4
material based
4
based sodium
4
trimetaphosphate synthesis
4
synthesis characterization
4
characterization antimicrobial
4

Similar Publications

Structural features, physiological functions and digestive properties of phosphorylated corn starch: A comparative study of four phosphorylating agents and two preparation methods.

Int J Biol Macromol

December 2024

Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China. Electronic address:

Phosphorylation is an important modification to modulate functional and digestive properties of starches. We systematically investigated starch phosphorylation process parameters by using two different preparation methods (slurry and semi-dry conditions) and four commonly used phosphorylating agents, namely sodium tripolyphosphate (STPP), sodium trimetaphosphate (STMP), STMP/STPP (99: 1), and sodium phytate (SP). The effects of phosphorylation on physicochemical characteristics, techno-functionalities, digestive properties and structural features of corn starch were analyzed.

View Article and Find Full Text PDF

Effect of reactive extrusion processing conditions on the production of potato-resistant starch and its use as an additive in yogurt.

Int J Biol Macromol

December 2024

Posgrado en Ciencia y Tecnología de Alimentos, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria, Av. de las Américas y Josefa Ortiz S/N, 80010 Culiacán, Sinaloa, México. Electronic address:

Starch has multiple uses in the food industry as a stabilizer, adhesive, gelling agent, thickener, and water retention agent. Nonetheless, native starch presents limitations that restrict its applications. Thus, starch can be chemically modified by reactive extrusion (REX) to overcome these disadvantages.

View Article and Find Full Text PDF

The objective of this in vitro study was to assess the efficacy of CaneCPI-5, either alone or in combination with various concentrations of sodium trimetaphosphate (TMP) in protecting against initial enamel erosion. A total of 135 bovine enamel specimens were prepared and categorized into nine groups (n/group=15) according to the following treatments: Deionized water; Commercial solution (Elmex Erosion ProtectionTM); 0.1 mg/mL CaneCPI-5; 0.

View Article and Find Full Text PDF

Antimicrobial efficacy of carvacrol-loaded curdlan hydrogels for enhancing shelf-life in seafood packaging applications.

Int J Food Microbiol

January 2025

School of Food Safety, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Research Center of Biomedical Device, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan. Electronic address:

As global warming and the energy crisis receive increasing attention, the development of ecofriendly functional food packaging materials has also garnered significant interest. In this study, curdlan was combined with foaming agents (Cremodan and xanthan) and a crosslinking agent (sodium trimetaphosphate) to form a porous curdlan hydrogel. The material properties of the curdlan hydrogels were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and a thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

The inherent limitations of native starch considerably restrict its applications in the food industry. To enhance its processing properties, Arenga pinnata (Wurmb.) Merr.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!