Metal-to-metal communication during the spin state transition of a [2 × 2] Fe(II) metallogrid at equilibrium and out-of-equilibrium conditions.

Dalton Trans

Photon Science - Structural Dynamics in Chemical Systems, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany.

Published: April 2022

Spin crossover (SCO) complexes are prototypes of materials with bi- or multi-stability in the solid state. The structural evolution during their spin transition is a key feature to establish the foundations of how to utilize this type of material. So far, ultrafast time-resolved structural investigations of SCO solids have been focused on monometallic complexes, though an increasing number of oligometallic SCO complexes showing cooperativity effects are being reported. Here, we used single crystal X-ray crystallography and time-resolved pink Laue photocrystallography to study the molecular reorganisation during the thermal and photoinduced SCO of a [2 × 2] tetranuclear metallogrid of the form [FeL](BF)·2MeCN ([L] = 4-methyl-3,5-bis{6-(2,2'-bipyridyl)}pyrazolate). A multitemperature crystallographic investigation on single crystals reveals an effective communication between the metal centres during thermal SCO, observed by the simultaneous transformation of the coordination polyhedra of both crystallographic-symmetry independent metal atoms accompanying the SCO in only one of them. Time-resolved photocrystallography results reveal the different molecular responses between mononuclear and oligonuclear complexes, after light irradiation with a picosecond laser pulse. While mononuclear SCO complexes reorganise once during the first nanosecond after excitation, the tetranuclear metallogrid exhibits a multiple structural rearrangement in the same span of time. Such behaviour is attributed to the elastic communication between metal atoms, which allows the propagation of a short-range elastic distortion over the entire Fe grid complex. The present study sheds light on the importance of strong elastic coupling of metal atoms during the correlated spin transition of oligometallic complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt04255fDOI Listing

Publication Analysis

Top Keywords

sco complexes
12
metal atoms
12
spin transition
8
tetranuclear metallogrid
8
communication metal
8
sco
7
complexes
6
metal-to-metal communication
4
spin
4
communication spin
4

Similar Publications

The development of molecular species with switchable magnetic properties has been a long-standing challenge in chemistry. One approach involves binding an analyte, such as protons, to a compound to trigger a change in magnetism. Transition metal complexes have been targeted for this type of magnetic modulation because they can undergo changes in their spin states.

View Article and Find Full Text PDF

A mononuclear iron(II) complex constructed using a complementary ligand pair exhibits intrinsic luminescence-spin-crossover coupling.

Dalton Trans

January 2025

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, P. R. China.

Molecular materials that exhibit synergistic coupling between luminescence and spin-crossover (SCO) behaviors hold significant promise for applications in molecular sensors and memory devices. However, the rational design and underlying coupling mechanisms remain substantial challenges in this field. In this study, we utilized a luminescent complementary ligand pair as an intramolecular luminophore to construct a new Fe-based SCO complex, namely [FeLL](BF)·HO (1-Fe, L is a 2,2':6',2''-terpyridine (TPY) derivative ligand and L is 2,6-di-1-pyrazol-1-yl-4-pyridinecarboxylic acid), and two isomorphic analogs (2-Co, [CoLL](BF)·HO and 3-Zn, [ZnLL](BF)·HO).

View Article and Find Full Text PDF

Previous studies have found that passive social media use (PaSMU) tends to induce upward contrast, thereby affecting well-being. However, this perspective alone may overlook the mechanisms of other social comparison phenomena. This study analyzes the influence mechanism of PaSMU on subjective well-being (SWB) by categorizing social comparison into upward identification, upward contrast, downward identification, and downward contrast while incorporating social comparison orientation (SCO) as a moderating variable.

View Article and Find Full Text PDF

Selective catalytic oxidation (SCO) of NH to N is one of the most effective methods used to eliminate NH emissions. However, achieving high conversion over a wide operating temperature range while avoiding over-oxidation to NO remains a significant challenge. Here, we report a bi-metallic surficial catalyst (PtCuO/AlO) with improved Pt atom efficiency that overcomes the limitations of current catalysts.

View Article and Find Full Text PDF

Transition metal mechanophores exhibiting force-activated spin-crossover are attractive design targets, yet large-scale discovery of them has not been pursued due in large part to the time-consuming nature of trial-and-error experiments. Instead, we leverage density functional theory (DFT) and external force explicitly included (EFEI) modeling to study a set of 395 feasible Fe and Co mechanophore candidates with tridentate ligands that we curate from the Cambridge Structural Database. Among nitrogen-coordinating low-spin complexes, we observe the prevalence of spin crossover at moderate force, and we identify 155 Fe and Co spin-crossover mechanophores and derive their threshold force for low-spin to high-spin transition ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!