Aim: The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines).

Methods And Results: For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls.

Conclusions: We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum.

Significance And Impact Of Study: Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.15554DOI Listing

Publication Analysis

Top Keywords

belowground pest
12
fungal isolates
12
above- belowground
8
soybean plants
8
aboveground pests
8
cabbage looper
8
soybean looper
8
soybean cyst
8
cyst nematode
8
leaf area
8

Similar Publications

AM fungus plant colonization rather than an Epichloë endophyte attracts fall armyworm feeding.

Mycorrhiza

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.

Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.

View Article and Find Full Text PDF

Background: Plant root exudates play crucial roles in maintaining the structure and function of the whole belowground ecosystem and regulating the interactions between roots and soil microorganisms. Ralstonia solanacearum causes bacterial wilt disease in many plants, while root exudate-mediated inhibition of pathogen infection is poorly understood. Here, we characterize the chemical divergence between root exudates of healthy and diseased tobacco plants and the effects of that variability on the rhizosphere microbial community and the occurrence of bacterial wilt.

View Article and Find Full Text PDF

Western corn rootworm resistance in maize persists in the absence of jasmonic acid.

Planta

December 2024

Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.

Article Synopsis
  • Jasmonic acid (JA), a plant hormone linked to defense against insect feeding, was found not to influence larval growth, survival, or development speed in western corn rootworm (WCR) when present in low levels in maize.* -
  • A study used a double mutant of maize (opr7opr8) that does not produce JA to directly test JA's role in resistance to WCR and found no significant differences in the insects' growth or damage caused to roots.* -
  • However, there was a notable reduction in shoot growth related to WCR feeding in the JA-deficient mutant, suggesting JA plays a role in aboveground responses to herbivory rather than root resistance.*
View Article and Find Full Text PDF

Genotype-associated core bacteria enhance host resistance against kiwifruit bacterial canker.

Hortic Res

November 2024

Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.

Article Synopsis
  • Different plant cultivars (disease-resistant 'Wanjin' and disease-susceptible 'Donghong') host distinct bacterial communities in their phyllosphere and rhizosphere, influencing plant health.
  • The study revealed that 'Wanjin' has a richer array of beneficial microbes and is less affected by field location compared to 'Donghong', particularly following infection by a pathogen.
  • Key microbial species were identified that enhance plant performance during disease challenges, suggesting potential strategies for improving kiwifruit disease management through targeted microbial use.
View Article and Find Full Text PDF

As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!