Aim: The objective of this research was to screen fungal isolates originally isolated from cotton plants and measure their effects on the interactions between soybean and two aboveground pests (cabbage looper; Trichoplusia ni and soybean looper; Chrysodeixis includens) as well as a belowground pest (soybean cyst nematode; Heterodera glycines).
Methods And Results: For aboveground pests, we measured the leaf area consumed and larval weight. For our belowground pest tests, we measured shoot height, shoot fresh weight, root fresh weight and number of cysts. Out of the 50 fungal isolates tested, we tested 30 fungi in the interaction with cabbage looper, 36 for soybean looper, 41 for soybean cyst nematode. We tested 23 isolates against all pests and identified multiple isolates that significantly changed the response of pests on inoculated soybean plants versus controls.
Conclusions: We identified three fungal isolates that significantly reduced both leaf area consumed aboveground by caterpillars and number of cysts produced belowground by nematodes. These isolates were an Epicoccum italicum, a Chaetomium undulatum and a Stemphylium majusculum.
Significance And Impact Of Study: Overall, this study provides important insights into plant-fungal interactions and their effect on both above- and belowground pests. This study also highlights an important first step towards harnessing the potential of microbial inoculates as a tool for integrated pest management in soybeans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jam.15554 | DOI Listing |
Mycorrhiza
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
Most cold-season grasses can be colonized by belowground arbuscular mycorrhizal (AM) fungi and foliar grass endophytes (Epichloë) simultaneously while also be attacked by insect herbivores. The colonization of AM fungi or the presence of grass endophytes is associated with increased resistance by the host plant. However, studies on how these two symbionts affect host plants and mitigate insect pest attack are currently lacking.
View Article and Find Full Text PDFPest Manag Sci
December 2024
College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
Background: Plant root exudates play crucial roles in maintaining the structure and function of the whole belowground ecosystem and regulating the interactions between roots and soil microorganisms. Ralstonia solanacearum causes bacterial wilt disease in many plants, while root exudate-mediated inhibition of pathogen infection is poorly understood. Here, we characterize the chemical divergence between root exudates of healthy and diseased tobacco plants and the effects of that variability on the rhizosphere microbial community and the occurrence of bacterial wilt.
View Article and Find Full Text PDFPlanta
December 2024
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA.
Hortic Res
November 2024
Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China.
J Invertebr Pathol
November 2024
Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:
As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!