Microbes make a remarkable contribution to the health and well-being of living beings all over the world. Interestingly, pterin deaminase is an amidohydrolase enzyme that exhibits antitumor, anticancer activities and antioxidant properties. With the existing evidence of the presence of pterin deaminase from microbial sources, an attempt was made to reveal the existence of this enzyme in the unexplored bacterium Agrobacterium tumefaciens LBA4404. After, the cells were harvested and characterized as intracellular enzymes and then partially purified through acetone precipitation. Subsequently, further purification step was carried out with an ion-exchange chromatogram (HiTrap Q FF) using the Fast-Protein Liquid Chromatography technique (FPLC). Henceforward, the approximate molecular weight of the purified pterin deaminase was determined through SDS-PAGE. Furthermore, the purified protein was identified accurately by MALDI-TOF, and the sequence was explored through a Mascot search engine. Additionally, the three-dimensional structure was predicted and then validated, as well as ligand-binding sites, and the stability of this enzyme was confirmed for the first time. Thus, the present study revealed the selected parameters showing a considerable impact on the identification and purification of pterin deaminase from A. tumefaciens LBA4404 for the first time. The enzyme specificity makes it a favorable choice as a potent anticancer agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bab.2342 | DOI Listing |
Biotechnol Appl Biochem
December 2023
Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India.
Pterin deaminase stands as a metalloenzyme and exhibits both antitumor and anticancer activities. Therefore, this study aimed to explore the molecular function of zinc finger protein-160 (zfp160) from Aspergillus terreus with its enzyme mechanism in detail. Subsequently, preliminary molecular docking studies on zfp160 from A.
View Article and Find Full Text PDFBMC Microbiol
September 2022
Faculty of Life and Environmental Sciences, Microbiology Research Center for Sustainability, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
Background: Folic acid (FA) is a synthetic vitamin (B) and the oxidized form of a metabolic cofactor that is essential for life. Although the biosynthetic mechanisms of FA are established, its environmental degradation mechanism has not been fully elucidated. The present study aimed to identify bacteria in soil that degrade FA and the mechanisms involved.
View Article and Find Full Text PDFBiotechnol Appl Biochem
February 2023
Cancer Therapeutics Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India.
Microbes make a remarkable contribution to the health and well-being of living beings all over the world. Interestingly, pterin deaminase is an amidohydrolase enzyme that exhibits antitumor, anticancer activities and antioxidant properties. With the existing evidence of the presence of pterin deaminase from microbial sources, an attempt was made to reveal the existence of this enzyme in the unexplored bacterium Agrobacterium tumefaciens LBA4404.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
June 2016
Department of Microbiology, Karpagam University, Coimbatore, 641021, Tamilnadu, India.
Pterin deaminase is an amidohydrolase enzyme hydrolyzing pteridines to form lumazine derivatives and ammonia. The enzyme captured the attention of scientists as early as 1959 and had been patented for its application as an anticancer agent. It is ubiquitously present in prokaryotes and has been reported in some eukaryotes such as honey bee, silkworm and rats.
View Article and Find Full Text PDFJ Am Chem Soc
January 2013
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California 94143, USA.
Of the over 22 million protein sequences in the nonredundant TrEMBL database, fewer than 1% have experimentally confirmed functions. Structure-based methods have been used to predict enzyme activities from experimentally determined structures; however, for the vast majority of proteins, no such structures are available. Here, homology models of a functionally uncharacterized amidohydrolase from Agrobacterium radiobacter K84 (Arad3529) were computed on the basis of a remote template structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!