Background: Apostichopus japonicus and Parastichopus californicus are two of the most important and profitable commercial sea cucumbers along the North Pacific coast. This study compared the body wall production rate (BWPR), proximate composition, amino acid, fatty acid, trace element and vitamin composition, and nonspecific immune enzyme activities of A. japonicus and P. californicus cultured in an artificial pond.
Results: The BWPR, crude fat and ash content in the body walls of A. japonicus and P. californicus showed remarkable differences (P < 0.05). For the 18 amino acids tested, differences in the contents of 15 were significant (P < 0.05) between the two species, except for threonine, methionine and histidine, and their first limiting amino acids were both methionine+cysteine. There were seven saturated and ten unsaturated fatty acids in their body walls, and except for 18:1 and 20:1, the content differences of the other 15 fatty acids were all significant (P < 0.05). Furthermore, between the two sea cucumbers, differences in the content of seven trace elements (Cu, Fe, Mn, Zn, Cr, Ni, Se) and six vitamins (B1, B3, B5, B9, C, E) were significant (P < 0.05). The activities of superoxide dismutase (SOD), catalase (CAT), acid phosphatase (ACP) and alkaline phosphatase (AKP) also showed distinct differences (P < 0.05).
Conclusion: There are greater differences in the biochemical compositions and contents between A. japonicus and P. californicus, each with its own unique quality advantages. A. japonicus and P. californicus have high nutritional value, which are both the superior sea cucumbers. © 2022 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.11899 | DOI Listing |
J Agromedicine
January 2025
Department of Mechanical Engineering, George Mason University, Fairfax, VA, USA.
Objectives: Commercial fishing is one of the most dangerous industries in the United States, and although injuries have been a prominent focus for research, some health and safety risk factors such as sleep are understudied. In this paper, data from a multi-modal research study of sleep patterns, lifestyle factors, occupational exposures, medical histories, and health assessments in four U.S.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China.
The razor clam , a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Institute of Food Safety, Animal Health and Environment "BIOR", LV-1076 Riga, Latvia.
The grey seal () is a fish-eating mammal and an apex predator in the Baltic Sea. It serves as the definitive host for several parasite species that utilize fish as intermediate or paratenic hosts. This study aimed to determine the endoparasite fauna of grey seals by-caught in the Latvian commercial coastal fishery and to analyze the impact of parasites on the seals' nutritional status.
View Article and Find Full Text PDFGrey mullets (family Mugilidae) are widespread across coastal, brackish, and freshwater habitats, and have supported fisheries for millennia. Despite their global distribution and commercial value, little is known about their movement ecology and its role in the co-existence of sympatric mullet species. Gaps in knowledge about migratory behaviour, seasonal occurrence, and movement scales have also impeded effective management, highlighting the need for further research.
View Article and Find Full Text PDFJ Family Med Prim Care
December 2024
Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ, USA.
Objective: Selecting the right medication for major depressive disorder (MDD) is challenging, and patients are often on several medications before an effective one is found. Using patient EEG patterns with computer models to select medications is a potential solution, however, it is not widely performed. Therefore, we evaluated a commercially available EEG data analysis system to help guide medication selection in a clinical setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!