Understanding drivers of metapopulation dynamics remains a critical challenge for ecology and conservation. In particular, the degree of synchrony in metapopulation dynamics determines how resilient a metapopulation is to a widespread disturbance. In this study, we used 21 years of egg mass count data across 64 nonpermanent freshwater ponds in Connecticut, USA to evaluate patterns of abundance and growth and to assess regional as well as local factors in shaping the population dynamics of wood frogs (Rana sylvatica = Lithobates sylvaticus). In particular, we asked whether a species known to undergo metapopulation dynamics exhibited spatial synchrony in abundances. With the exception of a single year when breeding took place during severe drought conditions, our analyses revealed no evidence of synchrony despite close proximity (mean minimum distance < 300 m) of breeding ponds across the 3213-ha study area. Instead, local, pond-scale conditions best predicted patterns of abundance and population growth rate. We found negative density dependence on population growth rate within ponds as well as evidence that larger neighboring pond populations had a negative effect on focal ponds. Beyond density, pond depth was a critical predictor; deeper ponds supported larger populations. Drought conditions and warm winters negatively affected populations. Overall, breeding ponds vary in critical ways that either support larger, more persistent populations or smaller populations that are not represented by breeding pairs in some years. The infrequency of spatial synchrony in this system is surprising and suggests greater resilience to stressors than would have been expected if dynamics were strongly synchronized. More generally, understanding the characteristics of systems that determine synchronous population dynamics will be critical to predicting which species are more or less resilient to widespread disturbances like land conversion or climate change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ecy.3696 | DOI Listing |
Process-based models for range dynamics are urgently needed due to increasing intensity of human-induced biodiversity change. Despite a few existing models that focus on demographic processes, their use remains limited compared to the widespread application of correlative approaches. This slow adoption is largely due to the challenges in calibrating biological parameters and the high computational demands for large-scale applications.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045.
Climate change is increasing the frequency of large-scale, extreme environmental events and flattening environmental gradients. Whether such changes will cause spatially synchronous, large-scale population declines depends on mechanisms that limit metapopulation synchrony, thereby promoting rescue effects and stability. Using long-term data and empirical dynamic models, we quantified spatial heterogeneity in density dependence, spatial heterogeneity in environmental responses, and environmental gradients to assess their role in inhibiting synchrony across 36 marine fish and invertebrate species.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi, China.
Human mobility between different regions is a major factor in large-scale outbreaks of infectious diseases. Deep learning models incorporating infectious disease transmission dynamics for predicting the spread of multi-regional outbreaks due to human mobility have become a hot research topic. In this study, we incorporate the Graph Transformer Neural Network and graph learning mechanisms into a metapopulation SIR model to build a hybrid framework, Metapopulation Graph Transformer Neural Network (M-Graphormer), for high-dimensional parameter estimation and multi-regional epidemic prediction.
View Article and Find Full Text PDFEcol Evol
January 2025
Ecostrat GmbH Berlin Germany.
A dramatic decrease of biodiversity is currently questioning human-environment interactions that have shaped ecosystems over thousands of years. In old cultural landscapes of Central and East European (CEE) countries, a vast species decline has been reported for various taxa although intensive land cultivation has been reduced in favor of agroecological transformation, nature conservation and sustainable land management in the past 30 years. Thus, in the recent history, agricultural intensification cannot solely be discussed as the major driver controlling biodiversity.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.
Variation in reproductive success is a fundamental prerequisite for sexual selection to act upon a trait. Assessing such variation is crucial in understanding a species' mating system and offers insights into population growth. Parentage analyses in cetaceans are rare, and the underlying forces of sexual selection acting on their mating behaviours remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!