The widespread use of plastic goods creates huge disposal issues and environmental concerns. Increasing emphasis has been paid to the notion of a circular economy, which might have a significant impact on the demand for plastic raw materials. Post-consumer plastics recycling is a major focus of the nation's circular economy. This study focuses on energy recovery from waste plastics as an alternative fuel source to meet the circular economy demand. Waste plastic fuel produced through pyrolysis has been claimed to be utilized as a substituted fuel. This work focuses to determine the performance and emission standards of Waste Plastic Fuel (WPF) generated from the pyrolysis of High-Density Polyethylene (HDPE) in a single-cylinder Direct Injection Diesel Engine (DIDE). Three different ratios of WPF were combined with 10% ethanol and 10% ethoxy ethyl acetate as an oxygenated additive to create quaternary fuel blends. The ethanol has a low viscosity, a high oxygen content, a high hydrogen-to-carbon ratio as favourable properties, the quaternary fuel results the improved brake thermal efficiency, fuel consumption and reduced emissions. The blend WEE20 exhibits 4.7% higher brake thermal efficiency, and 7.8% reduced fuel consumption compared to the diesel. The quaternary fuel blends demonstrated decreased carbon monoxide of 3.7 to 13.4% and reduced hydrocarbons of 2 to 16% under different load conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963890PMC
http://dx.doi.org/10.1038/s41598-022-09148-2DOI Listing

Publication Analysis

Top Keywords

circular economy
16
quaternary fuel
12
fuel
10
energy recovery
8
recovery waste
8
waste plastics
8
ethoxy ethyl
8
ethyl acetate
8
waste plastic
8
plastic fuel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!