The eukaryotic plasmalemma, eukaryotic cytoplasm with its usual cytomembranes, and eukaryotic nucleus are obligatory components of the eukaryotic cell. All other structural elements (organelles) are only derivates of the aforesaid cell components and they may be absent sometimes. There are protozoans having simultaneously no flagelles, mitochondria and chloroplasts (all the representatives of phylum Microspora, amoeba Pelomyxa palustris, and others). The following five general principles play the main role in the morphofunctional organization of the cell. The principle of hierarchy of block organization of living systems. Complex morphofunctional blocks (organelles) specific for the eukaryotic cell are formed. The compartmentalization principle. The main cell organelles (nuclei, flagellae, mitochondria, chloroplasts, etc.) undergo a relative morphological isolation from each other and other cell organelles by means of the total or partial surrounding by membranes; this may ensure the originality of their evolution and function. The principle of poly- and oligomerization of morphofunctional blocks. It permits the cell to enlarge its sizes and to raise the level of integration. The principle of heterochrony, including three subprinciples: conservatism of useful signs; a strong acceleration of evolutionary development of the separate blocks; simplification of the structure, reduction or total disappearance of some blocks. It explains a preservation of prokaryotic signs in the eukaryotic cell or in its organelles. The principle of independent origin of similar morphofunctional blocks in the process of evolution of living systems. The parallelism of the signs in unrelated groups of cells (or protists) arises due to this principle.

Download full-text PDF

Source

Publication Analysis

Top Keywords

eukaryotic cell
16
morphofunctional blocks
12
cell organelles
12
cell
9
eukaryotic
8
morphofunctional organization
8
mitochondria chloroplasts
8
living systems
8
principle
6
morphofunctional
5

Similar Publications

Unlabelled: Marine protists form complex communities that are shaped by environmental and biological ecosystem properties, as well as ecological interactions between organisms. While all of these factors play a role in shaping protistan communities, the specific ways in which these properties and interactions influence protistan communities remain poorly understood. Fourteen years and 9 months of eukaryotic amplicon (18S-V4 rRNA gene) data collected monthly at the San Pedro Ocean Time-series (SPOT) station were used to evaluate the impacts that environmental and biological factors, and protist-protist interactions had on protistan community composition.

View Article and Find Full Text PDF

Mitochondrial dysfunction is involved in numerous diseases and the aging process. The integrated stress response (ISR) serves as a critical adaptation mechanism to a variety of stresses, including those originating from mitochondria. By utilizing mass spectrometry-based cellular thermal shift assay (MS-CETSA), we uncovered that phosphatidylethanolamine-binding protein 1 (PEBP1), also known as Raf kinase inhibitory protein (RKIP), is thermally stabilized by stresses which induce mitochondrial ISR.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).

View Article and Find Full Text PDF

Molecular and functional convergences associated with complex multicellularity in Eukarya.

Mol Biol Evol

January 2025

Laboratório de Algoritmos em Biologia, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.

A key trait of Eukarya is the independent evolution of complex multicellular (CM) in animals, plants, fungi, brown algae and red algae. This phenotype is characterized by the initial exaptation of cell-cell adhesion genes followed by the emergence of mechanisms for cell-cell communication, together with the expansion of transcription factor gene families responsible for cell and tissue identity. The number of cell types (NCT) is commonly used as a quantitative proxy for biological complexity in comparative genomics studies.

View Article and Find Full Text PDF

Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!