Introduction: Breast cancer is the most common cancer and the leading cause of cancer-related death in women worldwide. Risk prediction models may be useful to guide risk-reducing interventions (such as pharmacological agents) in women at increased risk or inform screening strategies for early detection methods such as screening.

Methods And Analysis: The study will use data for women aged 20-90 years between 2000 and 2020 from QResearch linked at the individual level to hospital episodes, cancer registry and death registry data. It will evaluate a set of modelling approaches to predict the risk of developing breast cancer within the next 10 years, the 'combined' risk of developing a breast cancer and then dying from it within 10 years, and the risk of breast cancer mortality within 10 years of diagnosis. Cox proportional hazards, competing risks, random survival forest, deep learning and XGBoost models will be explored. Models will be developed on the entire dataset, with 'apparent' performance reported, and internal-external cross-validation used to assess performance and geographical and temporal transportability (two 10-year time periods). Random effects meta-analysis will pool discrimination and calibration metric estimates from individual geographical units obtained from internal-external cross-validation. We will then externally validate the models in an independent dataset. Evaluation of performance heterogeneity will be conducted throughout, such as exploring performance across ethnic groups.

Ethics And Dissemination: Ethics approval was granted by the QResearch scientific committee (reference number REC 18/EM/0400: OX129). The results will be written up for submission to peer-reviewed journals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961149PMC
http://dx.doi.org/10.1136/bmjopen-2021-050828DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
prediction models
8
will
8
risk developing
8
developing breast
8
models will
8
internal-external cross-validation
8
cancer
7
models
5
breast
5

Similar Publications

Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Update on the Progress of Musashi-2 in Malignant Tumors.

Front Biosci (Landmark Ed)

January 2025

Department of Hepatobiliary and Pancreatic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 030032 Taiyuan, Shanxi, China.

Since the discovery of the Musashi (MSI) protein, its ability to affect the mitosis of Drosophila progenitor cells has garnered significant interest among scientists. In the following 20 years, it has lived up to expectations. A substantial body of evidence has demonstrated that it is closely related to the development, metastasis, migration, and drug resistance of malignant tumors.

View Article and Find Full Text PDF

Tryptophan catabolism is a central pathway in many cancers, serving to sustain an immunosuppressive microenvironment. The key enzymes involved in this tryptophan metabolism such as indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are reported as promising novel targets in cancer immunotherapy. IDO1 and TDO overexpression in TNBC cells promote resistance to cell death, proliferation, invasion, and metastasis.

View Article and Find Full Text PDF

Socio-economic inequalities in second primary cancer incidence: A competing risks analysis of women with breast cancer in England between 2000 and 2018.

Int J Cancer

January 2025

Inequalities in Cancer Outcomes Network (ICON) group, Department of Health Services Research and Policy, Faculty of Public Health and Policy, London School of Hygiene & Tropical Medicine, London, UK.

We aimed to investigate socio-economic inequalities in second primary cancer (SPC) incidence among breast cancer survivors. Using Data from cancer registries in England, we included all women diagnosed with a first primary breast cancer (PBC) between 2000 and 2018 and aged between 18 and 99 years and followed them up from 6 months after the PBC diagnosis until a SPC event, death, or right censoring, whichever came first. We used flexible parametric survival models adjusting for age and year of PBC diagnosis, ethnicity, PBC tumour stage, comorbidity, and PBC treatments to model the cause-specific hazards of SPC incidence and death according to income deprivation, and then estimated standardised cumulative incidences of SPC by deprivation, taking death as the competing event.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!