Polysaccharides derived from lignocellulose are promising sustainable carbon sources. Cellulosome is a supramolecular machine integrating multi-function enzymes for effective lignocellulose bio-saccharification. However, how various non-cellulose components of lignocellulose affect the cellulosomal saccharification is hitherto unclear. This study first investigated the stability and oxygen sensitivity of the cellulosome from Clostridium thermocellum during long-term saccharification process. Then, the differential inhibitory effects of non-cellulose components, including lignin, xylan, and arabinoxylan, on the cellulosome-based saccharification were determined. The results showed that lignin played inhibitory roles by non-productively adsorbing extracellular proteins of C. thermocellum. Differently, arabinoxylan preferred to bind with the cellulosomal components. Almost no adsorption of cellulosomal proteins on solid xylan was detected. Instead, xylan in water-dissolved form interacted with the cellulosomal proteins, especially the key exoglucanase Cel48S, leading to the xylan inhibitory effect. Compared to xylan, xylooligosaccharides influenced the cellulosome activity slightly. Hence, this work demonstrates that the timely hydrolysis or removal of dissolved xylan is important for cellulosome-based lignocellulose saccharification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.03.158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!