This study compared the heavy metal concentration in water, sediment, and shrimp at different growth stages of culture and subsequently evaluated the ecotoxicological and human health risk status. Total trace element concentration in the water, sediment and shrimp ranged from not detected (ND) (Hg) to 91.05 (Fe) μg/L, 0.01 (Hg) to 19, 246.33 (Fe) mg/kg, and ND (Hg) to 13.98 (Fe) mg/kg, respectively. Toxic metals such as, Cd, Hg, and Pb in shrimps ranged from ND to 2.11 mg/kg, ND to 0.158 mg/kg, ND to 0.088 mg/kg, and ND to 0.469 mg/kg, respectively. Toxic heavy metals at all the growth stages of shrimps (days of culture (DOC)-01 to DOC-90) were found below the maximum residual limit (MRL) of 0.5 mg/kg set by the European Commission (EC). Similarly, Cu, Zn, and As concentrations in shrimp were also far below the MRLs of 30 mg/kg, 100 mg/kg, and 76 mg/kg set by the World Health Organization and Food Safety and Standard Authority of India, respectively. The concentration of heavy metals increased from DOC-01 to DOC-90 and was positively correlated with the length and weight of the shrimps (p < 0.05). The risk assessment was estimated for both Indians and Americans and found no carcinogenic (lifetime cancer risk (LCR) < 10) and non-carcinogenic (THQ and TTHQ<1) health risks through consumption of shrimp cultured in this region. The hazard quotient (HQ < 1), hazard index (HI < 1), and LCR (<10) values of the heavy metals indicated that the dermal absorption might not be a concern for the local fishermen and marine fish/shrimp farmworkers. Water and sediment quality indices were applied to assess the surface water and sediment quality, and their results were found nil to low levels of heavy metal contamination at all the sampling sites. All heavy metals studied in sediments were < effect range low (ERL) and < threshold effect level (TEL), indicating no adverse biological effects on aquatic organisms. Therefore, regular monitoring of the shrimp aquaculture system throughout the crop will provide evidence of heavy metals bioaccumulation in shrimps. This research will provide baseline data to help farmers establish the optimal aquaculture practices and regulatory authorities to formulate legislation and strategies to reduce heavy metal biomagnification in shrimps from farm to fork.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.113105DOI Listing

Publication Analysis

Top Keywords

heavy metals
12
growth stages
12
metals growth
8
human health
8
health risk
8
concentration water
8
water sediment
8
sediment shrimp
8
doc-01 doc-90
8
accumulation potential
4

Similar Publications

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Strongylus vulgaris, a devastating parasitic nematode in equids, causes life-threatening verminous aneurysms that are challenging to diagnose early. This study pioneered integrating nanotechnology into an indirect enzyme-linked immunosorbent assay (i-ELISA) system to enhance the sensitivity and specificity for detecting S. vulgaris larval antigens in equine serum samples, with PCR confirmation of the species.

View Article and Find Full Text PDF

Green synthesis techniques have drawn a lot of interest lately since they are beneficial to the environment and have potential uses in a variety of industries, including biomedicine. Because of their special physicochemical characteristics, copper nanoparticles (CuNPs) have become one of the most interesting options for use in biological applications among nanomaterials. An overview of green synthesis methods for CuNPs is given in this review, along with a discussion of their applications in cancer therapeutics.

View Article and Find Full Text PDF

Contamination of water by heavy toxic metal ions such as (e.g., Cr, Mn, Ni, Cu, Zn, As Pb, Cd, and Ag) can lead to serious environmental and human health problems because of their acute and chronic toxicity to the biological system.

View Article and Find Full Text PDF

Ecotoxicity of Biodegradable Microplastics and Bio-based Microplastics: A Review of in vitro and in vivo Studies.

Environ Manage

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.

As biodegradable and bio-based plastics increasingly replace conventional plastics, the need for a comprehensive understanding of their ecotoxicity becomes more pressing. This review systematically presents the ecotoxicity of the microplastics (MPs) from different biodegradable plastics and bioplastics on various animals and plants. High doses of polylactic acid (PLA) MPs (10%) have been found to reduce plant nitrogen content and biomass, and affect the accumulation of heavy metals in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!