Diverse functions of the auditory cortico-collicular pathway.

Hear Res

Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States; Department of Neuroscience, University of Pennsylvania, Philadelphia, United States; Department of Neurology, University of Pennsylvania, Philadelphia, United States. Electronic address:

Published: November 2022

Sensory processing is frequently conceptualized as a linear flow of information from peripheral receptors through hierarchically organized brain regions, ultimately reaching the cortex. In reality, this ascending stream is accompanied by massive descending connections that cascade from the cortex toward more peripheral subcortical structures. In the central auditory system, these feedback connections influence information processing at virtually every level of the pathway, including the thalamus, midbrain, and brainstem, and exert influence even at the level of the cochlea. The auditory cortico-collicular system, which connects the auditory cortex to the auditory midbrain, mediates manifold functions ranging from tuning shifts to defense behavior. In this review, we first summarize recent findings regarding the anatomical organization and physiological properties of the auditory cortico-collicular pathway. We then highlight several new studies that show that this projection system mediates high-level cognitive processes, acoustico-motor behaviors, and auditory plasticity, and discuss the circuit mechanisms through which they are mediated. Finally, we discuss remaining unanswered questions regarding cortico-collicular circuitry and function and potential avenues for future exploration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485291PMC
http://dx.doi.org/10.1016/j.heares.2022.108488DOI Listing

Publication Analysis

Top Keywords

auditory cortico-collicular
12
cortico-collicular pathway
8
auditory
7
diverse functions
4
functions auditory
4
cortico-collicular
4
pathway sensory
4
sensory processing
4
processing frequently
4
frequently conceptualized
4

Similar Publications

The binaural interaction component (BIC) of the auditory evoked potential is the difference between the waveforms of the binaural response and the sum of left and right monaural responses. This investigation examined BICs of the auditory brainstem (ABR) and middle-latency (MLR) responses concerning three objectives: 1) the level of the auditory system at which low-frequency dominance in BIC amplitudes begins when the binaural temporal fine structure is more influential with lower- than higher-frequency content; 2) how BICs vary as a function of frequency and lateralization predictability, as could relate to the improved lateralization of high-frequency sounds; 3) how attention affects BICs. Sixteen right-handed participants were presented with either low-passed (< 1000 Hz) or high-passed (> 2000 Hz) clicks at 30 dB SL with a 38 dB (A) masking noise, at a stimulus onset asynchrony of 180 ms.

View Article and Find Full Text PDF

Autism spectrum disorder is a neurodevelopmental disability that includes sensory disturbances. Hearing is frequently affected and ranges from deafness to hypersensitivity. In utero exposure to the antiepileptic valproic acid is associated with increased risk of autism spectrum disorder in humans and timed valproic acid exposure is a biologically relevant and validated animal model of autism spectrum disorder.

View Article and Find Full Text PDF

The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking.

View Article and Find Full Text PDF

The superior colliculus (SC), a conserved midbrain node with extensive long-range connectivity throughout the brain, is a key structure for innate behaviors. Descending cortical pathways are increasingly recognized as central control points for SC-mediated behaviors, but how cortico-collicular pathways coordinate SC activity at the cellular level is poorly understood. Moreover, despite the known role of the SC as a multisensory integrator, the involvement of the SC in the somatosensory system is largely unexplored in comparison to its involvement in the visual and auditory systems.

View Article and Find Full Text PDF

Diverse functions of the auditory cortico-collicular pathway.

Hear Res

November 2022

Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, United States; Department of Neuroscience, University of Pennsylvania, Philadelphia, United States; Department of Neurology, University of Pennsylvania, Philadelphia, United States. Electronic address:

Sensory processing is frequently conceptualized as a linear flow of information from peripheral receptors through hierarchically organized brain regions, ultimately reaching the cortex. In reality, this ascending stream is accompanied by massive descending connections that cascade from the cortex toward more peripheral subcortical structures. In the central auditory system, these feedback connections influence information processing at virtually every level of the pathway, including the thalamus, midbrain, and brainstem, and exert influence even at the level of the cochlea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!