Glutamate: A multifunctional amino acid in plants.

Plant Sci

Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan. Electronic address:

Published: May 2022

Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2022.111238DOI Listing

Publication Analysis

Top Keywords

glu
16
signaling molecule
8
glu metabolism
8
growth development
8
development defense
8
defense responses
8
glu receptor-like
8
receptor-like proteins
8
responses glu
8
glu signaling
8

Similar Publications

Acyl-acyl carrier protein (acyl-ACP) reductase (AAR) is a crucial enzyme in alka(e)ne production by recombinant Escherichia coli (E. coli). Engineered AAR expressed in E.

View Article and Find Full Text PDF

NAC (NAM, ATAF1/2 and CUC2) is a transcription factor which contributes to the response for both biotic and abiotic stresses. In this study, the regulatory effects and potential mechanisms of SNAC4/9 on resistance to Botrytis cinerea (B. cinerea) were investigated by the differences in physiological and biochemical indices as well as transcriptional and metabolic profiles between SNAC4/9 overexpressed (OE-SNAC4/9) and wild-type (WT) tomato fruit inoculated with B.

View Article and Find Full Text PDF

Inducing phospholipase A2 and cyclooxygenase-2 expression and prostaglandins' production of human dental pulp cells by activation of NOD receptor and its downstream signaling.

Int J Biol Macromol

December 2024

School of Dentistry, National Taiwan University Medical College, Taipei, Taiwan; Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan; School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Dental caries with invasion and infection by microorganisms may induce pulpitis and intolerable pain. L-Ala-γ-D-Glu-mDAP (TriDAP) is a DAP-comprising muramyl tripeptide and a peptidoglycan degradation product found in gram-negative pulpal pathogens. TriDAP activates nucleotide-binding oligomerization domain1/2 (NOD1/NOD2) and induces tissue inflammatory responses.

View Article and Find Full Text PDF

Spatial stable isotope tracing metabolic imaging is a cutting-edge technique designed to investigate tissue-specific metabolic functions and heterogeneity. Traditional matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) techniques often struggle with low coverage of low-molecular-weight (LMW) metabolites, which are often crucial for spatial metabolic studies. To address this, we developed a high-coverage spatial isotope tracing metabolic method that incorporates optimized matrix selection, sample preparation protocols, and enhanced post-ionization (MALDI2) techniques.

View Article and Find Full Text PDF

Background: Acquiring new knowledge necessitates alterations at the synaptic level within the brain. Glutamate, a pivotal neurotransmitter, plays a critical role in these processes, particularly in learning and memory formation. Although previous research has explored glutamate's involvement in cognitive functions, a comprehensive understanding of its real-time dynamics remains elusive during memory tasks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!