Aberrant DNA methylation is an early event in breast carcinogenesis and plays a critical role in regulating gene expression. Here, we perform genome-wide expression-methylation Quantitative Trait Loci (emQTL) analysis through the integration of DNA methylation and gene expression to identify disease-driving pathways under epigenetic control. By grouping the emQTLs using biclustering we identify associations representing important biological processes associated with breast cancer pathogenesis including regulation of proliferation and tumor-infiltrating fibroblasts. We report genome-wide loss of enhancer methylation at binding sites of proliferation-driving transcription factors including CEBP-β, FOSL1, and FOSL2 with concomitant high expression of proliferation-related genes in aggressive breast tumors as we confirm with scRNA-seq. The identified emQTL-CpGs and genes were found connected through chromatin loops, indicating that proliferation in breast tumors is under epigenetic regulation by DNA methylation. Interestingly, the associations between enhancer methylation and proliferation-related gene expression were also observed within known subtypes of breast cancer, suggesting a common role of epigenetic regulation of proliferation. Taken together, we show that proliferation in breast cancer is linked to loss of methylation at specific enhancers and transcription factor binding and gene activation through chromatin looping.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947789 | PMC |
http://dx.doi.org/10.1093/narcan/zcac008 | DOI Listing |
Ann Surg
January 2025
Wisconsin Surgical Outcomes Research Program, University of Wisconsin, Madison, WI.
Objective: To understand how breast cancer patients experience the surgical decision process and identify strategies surgeons can employ to empower patients to engage in decision-making.
Background: Patient engagement in decision-making is associated with improved patient outcomes. Although, some patients prefer that their healthcare provider drive the decision, the benefits of engaging in decision-making hold true even for patients who prefer to defer to their provider.
Cureus
December 2024
Pulmonary and Critical Care, Brody School of Medicine, East Carolina University, Greenville, USA.
Lung cancer is the third most prevalent cancer, following breast cancer in women and prostate cancer in men. However, it remains the leading cause of cancer-related mortality. As treatment options have advanced, the significance of accurate diagnosis has increased, enabling targeted and more personalized therapeutic treatments.
View Article and Find Full Text PDFFront Oncol
January 2025
The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University, Binghamton, NY, United States.
Introduction: Circulating tumor cells (CTCs) have attracted significant interest as a biomarker for cancer diagnosis. In this study, we judiciously constructed a recombinant MUC1-dependent adenovirus (rAdF35-MUC1) that can selectively replicate and overexpress copepod super green fluorescent proteins (copGFP) in MUC1-positive tumor cells to investigate its role in the detection of CTCs.
Methods: We conducted a comparative study between rAdF35-MUC1 and the existing hTERT-dependent adenovirus (rAdF35-hTERT).
JACS Au
January 2025
UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal.
The mucin -glycan sialyl Tn antigen (sTn, Neu5Acα2-6GalNAcα1--Ser/Thr) is an antigen associated with different types of cancers, often linked with a higher risk of metastasis and poor prognosis. Despite efforts to develop anti-sTn antibodies with high specificity for diagnostics and immunotherapy, challenges in eliciting high-affinity antibodies for glycan structures have limited their effectiveness, leading to low titers and short protection durations. Experimental structural insights into anti-sTn antibody specificity are lacking, hindering their optimization for cancer cell recognition.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Cancer cells with high expression of aldehyde dehydrogenase 1A1 (ALDH1A1) are more resistant to chemotherapy, contribute to tumor progression, and are associated with poor clinical outcomes. ALDH1A1 plays a critical role in protecting cells from reactive aldehydes and, in the case of stem cells, regulates their differentiation through the retinoic acid signaling pathway. Despite the importance of this enzyme, methods to study ALDH1A1 high-expressing cancer cells in vivo remain limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!