Myocardial infarction (MI) is the leading cause of death from coronary heart disease and requires immediate reperfusion therapy with thrombolysis, primary percutaneous coronary intervention, or coronary artery bypass grafting. However, myocardial reperfusion therapy is often accompanied by cardiac ischemia/reperfusion (I/R) injury, which leads to myocardial injury with detrimental consequences. The causes of I/R injury are unclear, but are multifactorial, including free radicals, reactive oxygen species, calcium overload, mitochondria dysfunction, inflammation, and neutrophil-mediated vascular injury. Mild hypothermia has been introduced as one of the potential inhibitors of myocardial I/R injury. Although animal studies have demonstrated that mild hypothermia significantly reduces or delays I/R myocardium damage, human trials have not shown clinical benefits in acute MI (AMI). In addition, the practice of hypothermia treatment is increasing in various fields such as surgical anesthesia and intensive care units. Adequate sedation for anesthetic procedures and protection from body shivering has become essential during therapeutic hypothermia. Therefore, anesthesiologists should be aware of the effects of therapeutic hypothermia on the metabolism of anesthetic drugs. In this paper, we review the existing data on the use of therapeutic hypothermia for AMI in animal models and human clinical trials to better understand the discrepancy between perceived benefits in preclinical animal models and the absence thereof in clinical trials thus far.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9171548 | PMC |
http://dx.doi.org/10.4097/kja.22156 | DOI Listing |
Clinics (Sao Paulo)
January 2025
Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea. Electronic address:
Introduction: This study aimed to investigate the associations among seizures, clinical characteristics, and brain injury on Magnetic Resonance Imaging (MRI) in infants with Hypoxic Ischemic Encephalopathy (HIE), and to determine whether these findings can predict unfavorable neurodevelopmental outcomes.
Method: Clinical and electrographic seizures were assessed by amplitude-integrated electroencephalogram, and the extent of brain injury was evaluated by using MRI. At 12‒24 months of age, developmental impairment or death was assessed.
Eur J Pediatr
January 2025
Neonatology Department. Hospital Sant Joan de Déu, Center for Maternal Fetal and Neonatal Medicine. Neonatal Brain Group, Universitat de Barcelona. Hospital Clínic, Universitat de Barcelona. BCNatal - Barcelona, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
Purpose: Perinatal hypoxic-ischemic encephalopathy (HIE) is a significant cause of neonatal brain injury. Therapeutic hypothermia (TH) is the standard treatment for term neonates, but its safety and efficacy in neonates < 36 weeks gestational age (GA) remains unclear. This case series aimed to evaluate the outcomes of preterm infants with HIE treated with TH.
View Article and Find Full Text PDFEur J Anaesthesiol
February 2025
From the Department of Neurosurgery, University of Buenos Aires School of Medicine (FZ), Department of Critical Care, Clínica Sagrada Familia (MR) and Department of Critical Care, Hospital Eva Perón de Merlo, Buenos Aires Province, Argentina (FZ, WV).
Physiol Plant
January 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
Mitogen-activated protein kinase kinase kinase kinases (MAP4Ks) are a class of highly conserved serine/threonine-protein kinases in eukaryotes. They participate in the typical MAPK cascade system and various signal transduction pathways regulating biological processes in plants, during stressful conditions. To date, genome-wide identification of MAP4Ks in cotton has not been reported.
View Article and Find Full Text PDFAm Heart J
December 2024
Department of cardiology, Guy's and St Thomas' NHS Foundation Trust, Harefield Hospital, London, UK; King's College London, London, UK.
Background: ST-segment elevation myocardial infarction (STEMI) is treated with immediate primary percutaneous coronary intervention (pPCI) to restore coronary blood flow in the acutely ischaemic territory, but is associated with reperfusion injury limiting the benefit of the therapy. No treatment has proven effective in reducing reperfusion injury. Transcoronary hypothermia has been tested in clinical studies and is well tolerated, but is generally established after crossing the occlusion with a guidewire therefore after initial reperfusion, which might have contributed to the neutral outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!