Magnetic antifouling material based ratiometric electrochemical biosensor for the accurate detection of CEA in clinical serum.

Biosens Bioelectron

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Published: July 2022

A novel ratio electrochemical biosensor based on multi-functional nanocomposite was developed. FeO was synthesized in situ on carboxyl functionalized 2D nanomaterial MXene, and then covalently bonded with [Ru(NH)] to obtain nanocomposites MXC-FeO-Ru. FeO and [Ru(NH)] can neutralize the electronegativity of the MXene to make the nanocomposites electrically neutral. Combine with the good hydrophilicity and conductivity of MXene, the nanocomposites can be utilized to construct antifouling electrochemical biosensors without modifying with specific antifouling materials. Moreover, FeO can endow the nanocomposites with magnetism, and [Ru(NH)] is used as an internal standard molecule. The strong magnetic MXC-FeO-Ru can be easily separated and firmly modified on the magnetic gold electrode (MGE). DNA double-stranded (dsDNA) containing an ferrocene (Fc)-modified carcinoembryonic antigen (CEA) aptamer can be specifically captured to the surface of the electrode by amido bond. In the presence of CEA, CEA binds to the aptamer and leaves the electrode surface, the electrochemical signal of Fc decreases, while the electrochemical signal of [Ru(NH)] is fixed on the electrode surface remains basically unchanged. The ratio of the electrochemical signals of Fc and [Ru(NH)] is proportional to the CEA concentration. The linear range of the sensor is 1 pg/mL to 1 μg/mL with a detection limit of 0.62 pg/mL. With the excellent antifouling performance, good conductivity of the nanocomposite, and the application of the ratiometric strategy, the biosensor can achieve high selectivity, accuracy, and sensitivity for the detection of targets even in complex samples, such as FBS and clinical serum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114216DOI Listing

Publication Analysis

Top Keywords

electrochemical biosensor
8
clinical serum
8
ratio electrochemical
8
mxene nanocomposites
8
electrode surface
8
electrochemical signal
8
electrochemical
6
cea
5
[runh]
5
magnetic antifouling
4

Similar Publications

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.

View Article and Find Full Text PDF

A High-Efficiency Electrochemical Biosensor for the Detection of Mucosal-Associated Invariant T Cells.

Anal Chem

December 2024

Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.

Mucosal-associated invariant T (MAIT) cells exhibit significant potential in the assessment of tumor development and immunotherapy. However, there is currently no convenient and efficient method to analyze the quantitative changes of MAIT cells during cancer development and treatment, which has not been extensively studied. Here, we report an electrochemical biosensor designed to efficiently monitor MAIT cells in peripheral blood by simultaneously recognizing Vα7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!