SignificanceDNA needs to be compacted to fit into nuclei and during cell division, when dense chromatids are formed for their mechanical segregation, a process that depends on the protein complex condensin. It forms and enlarges loops in DNA through loop extrusion. Our work resolves the atomic structure of a DNA-bound state of condensin in which ATP has not been hydrolyzed. The DNA is clamped within a compartment that has been reported previously in other structural maintenance of chromosomes (SMC) complexes, including Rad50, cohesin, and MukBEF. With the caveat of important differences, it means that all SMC complexes cycle through at least some similar states and undergo similar conformational changes in their head modules, while hydrolyzing ATP and translocating DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9168836 | PMC |
http://dx.doi.org/10.1073/pnas.2120006119 | DOI Listing |
mBio
January 2025
Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.
View Article and Find Full Text PDFMicrob Genom
January 2025
Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA.
Bacteria from the complex (Smc) are important multidrug-resistant pathogens that cause a broad range of infections. Smc is genomically diverse and has been classified into 23 lineages. Lineage Sm6 is the most common among sequenced strains, but it is unclear why this lineage has evolved to be dominant.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.
Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops.
View Article and Find Full Text PDFCell
January 2025
Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands. Electronic address:
Structural maintenance of chromosomes (SMC) complexes organize the genome via DNA loop extrusion. Although some SMCs were reported to do so symmetrically, reeling DNA from both sides into the extruded DNA loop simultaneously, others perform loop extrusion asymmetrically toward one direction only. The mechanism underlying this variability remains unclear.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.
The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!