Molecular-Level Understanding of Surface Roughness Boosting Segregation Behavior at the ZIF-8/Ionic Liquid Interfaces.

Langmuir

Institute of Advanced Materials (IAM), State-Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.

Published: April 2022

Here, we perform a series of classical molecular dynamics simulations for two different [HEMIM][DCA] and [BMIM][BF] ionic liquids (ILs) on the ZIF-8 surface to explore the interfacial properties of metal-organic framework (MOFs)/IL composite materials at the molecular level. Our simulation results reveal that the interfacial structures of anions and cations on the ZIF-8 surface are dominated by the surface roughness due to the steric hindrance, which is extremely different from the driving mechanism based on solid-ion interactions of ILs on flat solid surfaces. At the ZIF-8/IL interfaces, the open sodalite (SOD) cages of the ZIF-8 surface can block most of the large-size cations outside and significantly boost the segregation behavior of anions and cations. In comparison with the [BMIM][BF] IL, the [HEMIM][DCA] IL has much more anions entering into the open SOD cages owing to the combination of stronger ZIF-8-[DCA] interactions and more ordered arrangement of [DCA] anions on the ZIF-8 surface. Furthermore, more and stronger ZIF-8-[BF] hydrogen bonds (HBs) are found to exist on the cage edges than the ZIF-8-[DCA] HBs, further preventing [BF] anions from entering into SOD cages. By more detailed analyses, we find that the hydrophobic interaction has an important influence on the interfacial structures of the side chains of [HEMIM] and [BMIM] cations, while the π-π stacking interaction plays a key role in determining the interfacial structures of the imidazolium rings of both cations. Our simulation results in this work provide a molecular-level understanding of the underlying driving mechanism on segregation behavior at the ZIF-8/IL interfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c02922DOI Listing

Publication Analysis

Top Keywords

zif-8 surface
16
segregation behavior
12
interfacial structures
12
sod cages
12
molecular-level understanding
8
surface roughness
8
anions cations
8
driving mechanism
8
zif-8/il interfaces
8
anions entering
8

Similar Publications

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).

View Article and Find Full Text PDF

Although various biochars from different biomass materials have been developed to remediate dye-contaminated environments, the removal capabilities of pristine biochar for dyes urgently require further enhancement due to insufficient surface adsorption sites. To introduce more adsorption sites, this work proposes a simple approach to fabricate coconut shell biochar (CSB) based adsorbent by anchoring zeolitic imidazolate framework-8 (ZIF-8) via the active sites provided by polydopamine (PDA)-coated CSB. The nucleation sites provided by the PDA layer promote the dispersion of ZIF-8 on the surface of CSB, resulting in sufficient adsorption sites for removing malachite green (MG) and rhodamine B (RB) from wastewater.

View Article and Find Full Text PDF

Mesoporous Nitrogen-Doped Carbon Support from ZIF-8 for Pt Catalysts in Oxygen Reduction Reaction.

Nanomaterials (Basel)

January 2025

Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples.

View Article and Find Full Text PDF

The development of copper-based materials with a high efficiency and low cost is desirable for use in iodine (I) remediation. Herein, Cu-nanoparticles-functionalized, ZIF-8 (Zeolite Imidazole Framework-8)-derived, nitrogen-doped carbon composites (Cu@Zn-NC) were synthesized by ball milling and pyrolysis processes. The as-prepared composites were characterized using SEM, BET, XRD, XPS, and FT-IR analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!