Bromine Radical (Br and Br) Reactivity with Dissolved Organic Matter and Brominated Organic Byproduct Formation.

Environ Sci Technol

School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.

Published: April 2022

Dissolved organic matter (DOM) is a major scavenger of bromine radicals (e.g., Br and Br) in sunlit surface waters and during oxidative processes used in water treatment. However, the literature lacks quantitative measurements of reaction rate constants between bromine radicals and DOM and lacks information on the extent to which these reactions form brominated organic byproducts. Based on transient kinetic analysis with different fractions and sources of DOM, we determined reaction rate constants for DOM with Br ranging from <5.0 × 10 to (4.2 ± 1.3) × 10 M s, which are comparable with those of HO but higher than those with Br ( = (9.0 ± 2.0) × 10 to (12.4 ± 2.1) × 10 M s). Br and Br attack the aromatic and antioxidant moieties of DOM via the electron transfer mechanism, resulting in Br release with minimal substitution of bromine into DOM. For example, the total organic bromine was less than 0.25 μM (as Br) at environmentally relevant bromine radicals' exposures of ∼10 M·s. The results give robust evidence that the scavenging of bromine radicals by DOM is a crucial step to prevent inorganic bromine radical chemistry from producing free bromine (HOBr/OBr) and subsequent brominated byproducts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c00549DOI Listing

Publication Analysis

Top Keywords

dissolved organic
8
organic matter
8
brominated organic
8
bromine radicals
8
reaction rate
8
rate constants
8
bromine radical
4
radical reactivity
4
reactivity dissolved
4
organic
4

Similar Publications

Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu is a typical redox transient cation and has strong affinity to DOM.

View Article and Find Full Text PDF

The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl concentration. The results revealed that elevated Cl levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.

View Article and Find Full Text PDF

Algal decomposition plays an important role in affecting phosphorus (P) release from sediments in eutrophic lakes under global warming. Yet how rising air temperature affect endogenous P release from sediments during the algal decomposition is poorly understood. In this study, effect of increasing air temperature on endogenous P release was investigated.

View Article and Find Full Text PDF

Significant variation in mercury (Hg) bioaccumulation is observed across the diversity of freshwater ecosystems in North America. While there is support for the major drivers of Hg bioaccumulation, the relative influence of different external factors can vary widely among waterbodies, which makes predicting Hg risk across large spatial scales particularly challenging. We modeled Hg bioaccumulation by coupling Hg concentrations in more than 21,000 dragonflies collected across the United States from 2008 to 2021 with a suite of chemical (e.

View Article and Find Full Text PDF

A thermally polarized, dissolved-phase Xe phantom for quality-control and multisite comparisons of gas-exchange imaging.

J Magn Reson

January 2025

Center for Pulmonary Imaging Research (CPIR), Division of Pulmonary Medicine Cincinnati Children's Hospital Medical Center Cincinnati OH USA; Department of Pediatrics, University of Cincinnati OH USA; Department of Biomedical Engineering, University of Cincinnati OH USA; Imaging Research Center (IRC), Department of Radiology Cincinnati Children's Hospital Medical Center Cincinnati OH USA. Electronic address:

Harmonizing and validating Xe gas exchange imaging across multiple sites is hampered by a lack of a quantitative standard that 1) displays the unique spectral properties of Xe observed from human subjects in vivo and 2) has short enough T times to enable practical imaging. This work describes and demonstrates the development of two dissolved-phase, thermally polarized phantoms that mimic the in-vivo, red blood cell and membrane resonances of Xe dissolved in human lungs. Following optimization, combinations of two common organic solvents, acetone and dimethyl sulfoxide, resulted in two in-vivo-like dissolved-phase Xe phantoms yielding chemical shifts of 212.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!