Plasmodesmata (PD) have a diameter of around 30-50 nm which is well below the 200 nm limit of optical resolution, making analysis by light microscopy difficult and resolving internal structures of the PD such as the desmotubule impossible. Modern super-resolution methods such as 3D structured illumination microscopy (3D-SIM) can increase the lateral and axial resolution and work well on fixed, sectioned material. However, imaging in live plant cells requires careful optimization. Here we present a method to image PD using 3D-SIM in live BY2 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2132-5_8 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin 130118, China.
Astaxanthin (AST), as a natural antioxidant, has broad application prospects in medicine and health products. However, its highly unsaturated structure and significant lipophilic characteristics limit its dispersibility and bioavailability, thereby restricting its application in food, medicines, and nutraceuticals. To overcome these limitations, researchers have proposed the use of nano delivery systems.
View Article and Find Full Text PDFCurr Pharm Des
January 2025
Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.
Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Laboratory of Function and Evolutionary Morphology, FOCUS, Université de Liège, Liège, Belgique.
The inner ear of teleost fishes is known to serve both auditory and vestibular functions. Many studies have compared otoliths from different species and attempted to understand the observed differences within the light of environmental factors. However, experimental data on how otoliths could adapt are scarce.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy.
Naturally occurring photoenzymes are rare in nature, but among them, fatty acid photodecarboxylases derived from (FAPs) have emerged as promising photobiocatalysts capable of performing the redox-neutral, light-induced decarboxylation of free fatty acids (FAs) into C1-shortened alka(e)nes. Using a hybrid QM/MM approach combined with a polarizable embedding scheme, we identify the structural changes of the active site and determine the energetic landscape of the forward electron transfer (fET) from the FA substrate to the excited flavin adenine dinucleotide. We obtain a charge-transfer diradical structure where a water molecule rearranges spontaneously to form a H-bond interaction with the excited flavin, while the FA's carboxylate group twists and migrates away from it.
View Article and Find Full Text PDFFront Chem
January 2025
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
Bisphenol A (BPA) poses a significant environmental threat due to its widespread use as an industrial chemical and its classification as an environmental endocrine disruptor. The urgent need for effective BPA removal has driven research toward innovative solutions. In this study, we present the synthesis and application of a novel 2D-3D spherically hierarchical ZnInS (ZIS) photocatalyst for the photocatalytic degradation of BPA under visible light for the first time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!