Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Across three experiments (N = 1565), we investigated how forecasts about the spread of COVID 19 are impacted by data trends, and whether patterns of misestimation predict adherence to social-distancing guidelines. We also investigated how mode of data presentation influences forecasting of future cases by showing participants data on the number of COVID-19 cases from a 5-week period in either graphical, tabular, or text-only form. We consistently found that people shown tables produced more accurate forecasts compared to people shown line-graphs of the same data; yet people shown line-graphs were more confident in their estimates. These findings suggest that graphs engender false-confidence in the accuracy of forecasts, that people's forecasts of future cases have important implications for their attitudes concerning social distancing, and that tables may be better than graphs for informing the public about the trajectory of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960688 | PMC |
http://dx.doi.org/10.3758/s13421-022-01288-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!