A synthetic two-cistron expression system was constructed for the high-level expression of eukaryotic genes in Escherichia coli. This system was designed to overcome translational inhibition of mRNAs containing eukaryotic sequences. The first cistron in this system is a 31-base A + T-rich synthetic sequence that provides for efficient translation initiation. The second cistron contains the protein coding sequence for the eukaryotic gene. Insertion of the first cistron between the 5' untranslated region of the mRNA and the protein coding region separates the two and thereby potentially minimizes the formation of local secondary structures that might prevent ribosomes from binding and initiating translation. The 31-base cistron contains three nonsense codons (TAA), one in each of the three translational reading frames, and an 8-base Shine-Dalgarno sequence that is complementary to the 3' end of the 16S rRNA. The effects of translation of the first cistron in all three reading frames on the expression of the second cistron was examined. The most efficient expression of the second cistron seemed to occur when the stop codon that terminates translation of the first cistron is located 3' to the Shine-Dalgarno sequence and close to the AUG start codon for the second cistron. When the Shine-Dalgarno sequence was deleted from the first cistron, no detectable expression of the second cistron was observed. This two-cistron system has been used to express the gene encoding methionylalanyl bovine growth hormone with its native codons and the gene encoding methionyl human growth hormone at a level greater than 20% of total cell protein. In the case of human growth hormone, we show that the amount of gene product is not significantly diminished by placing a "functional" first cistron in front of a gene that can be expressed without a cistron.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC386959 | PMC |
http://dx.doi.org/10.1073/pnas.83.22.8506 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!