We demonstrate that β-oxo-substitution provides effective fine-tuning of both steady-state and transient electronic properties of octaalkyl-β-mono-oxochlorin and all isomers of the β,β'-dioxo-substituted chromophores. The addition of a carbonyl group increases the Q oscillator strength and red-shifts the absorption spectra. Each oxo-substitution results in a 2-fold increase in the singlet to triplet state intersystem crossing (ISC) rates, resulting in a 4-fold ISC rate increase for the dioxo-substituted chromophores. The effects of oxo-substitution on the ISC rate are thus additive. The progressive increase in the ISC rates correlates directly with the spin-vibronic channels provided by the C═O out-of-plane distortion modes, as evidenced by density functional theory (DFT) modeling. The triplet states, however, were not evenly affected by β-oxo-substitution, and reduction in the triplet lifetime seems to be influenced instead by the presence of NH tautomers in the dioxoisobacteriochlorins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9059185 | PMC |
http://dx.doi.org/10.1021/acs.jpca.2c01225 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!