Cyclic di-GMP triggers the hypoxic adaptation of Mycobacterium bovis through a metabolic switching regulator ArgR.

Environ Microbiol

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.

Published: September 2022

During infection, intracellular pathogens inevitably face the pressure of hypoxia. Mycobacterium tuberculosis and Mycobacterium bovis represent two typical intracellular bacteria, but the signalling pathway of their adaptation to hypoxia remains unclear. Here, we report a new mechanism of the hypoxic adaptation in M. bovis driven by the second messenger molecule c-di-GMP. We found that c-di-GMP was significantly accumulated in bacterial cells under hypoxic stress and blocked the inhibitory activity of ArgR, an arginine metabolism gene cluster regulator, which increased arginine synthesis and slowed tricarboxylic acid cycle (TCA cycle) and aerobic respiration. Meanwhile, c-di-GMP relieved the self-inhibition of argR expression, and ArgR could interact with the nitrite metabolic gene regulator Cmr, promoting the positive regulation of Cmr and, thereafter, the nitrite respiration. Consistently, c-di-GMP significantly induced the expression of arginine and nitrite metabolism gene clusters and increased the mycobacterial survival ability under hypoxia. Therefore, we found a new function of the second messenger molecule c-di-GMP and characterized ArgR as a metabolic switching regulator that can coordinate the c-di-GMP signal to trigger hypoxic adaptation in mycobacteria. Our findings provide a potential new target for blocking the life cycle of M. tuberculosis infection.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.15987DOI Listing

Publication Analysis

Top Keywords

hypoxic adaptation
12
mycobacterium bovis
8
metabolic switching
8
switching regulator
8
second messenger
8
messenger molecule
8
molecule c-di-gmp
8
metabolism gene
8
c-di-gmp
6
argr
5

Similar Publications

Alterations in the Rice Coleoptile Metabolome During Elongation Under Submergence Stress.

Int J Mol Sci

December 2024

Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya em., 7/9, 199034 St. Petersburg, Russia.

Plants known as obligate aerobes developed different mechanisms to overcome the damage incurred under oxygen limitation. One of the survival strategies to have commonly appeared in hydrophytic plants is the escape strategy, which accelerates plant axial organs' growth in order to escape hypoxic conditions as soon as possible. The present study aimed to distinguish the alterations in coleoptile elongation, viability and metabolic profiles in coleoptiles of slow- and fast-growing rice varieties.

View Article and Find Full Text PDF

This study presents a comprehensive examination of the physiological adaptations of white shrimp (Penaeus vannamei) to low-salinity conditions and evaluates the effects of supplementing dietary glucose on disease resistance. Compared to the control group, shrimp cultured at a salinity of 4 psu exhibit significantly elevated expression levels of adenosine 5'-monophosphate-activated protein kinase (AMPK) in the hepatopancreas, which leads to increased energy expenditure and a corresponding reduction in resistance to infection by Vibrio alginolyticus. The suppression of AMPK via dsAMPK treatment markedly enhances disease resistance.

View Article and Find Full Text PDF

Cystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).

View Article and Find Full Text PDF

Metabolic adaptation of myeloid cells in the glioblastoma microenvironment.

Front Immunol

January 2025

Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, GlioME Team, Marseille, France.

In recent decades, immunometabolism in cancers has emerged as an interesting target for treatment development. Indeed, the tumor microenvironment (TME) unique characteristics such as hypoxia and limitation of nutrients availability lead to a switch in metabolic pathways in both tumor and TME cells in order to support their adaptation and grow. Glioblastoma (GBM), the most frequent and aggressive primary brain tumor in adults, has been extensively studied in multiple aspects regarding its immune population, but research focused on immunometabolism remains limited.

View Article and Find Full Text PDF

Ferroptosis and PANoptosis Under Hypoxia Pivoting on the Crosstalk between DHODH and GPX4 in Corneal Epithelium.

Free Radic Biol Med

January 2025

Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China. Electronic address:

Cell death under stress conditions like hypoxia, involves multiple interconnected pathways. In this study, a stable dihydroorotate dehydrogenase (DHODH) knockdown human corneal epithelial cell line was established to explore the regulation of hypoxic cell death, which was mitigated by various cell death inhibitors, particularly by a lipid peroxyl radical scavenger liproxstatin-1 (Lip-1), suggesting that hypoxic cell death involves crosstalk of ferroptosis and PANoptosis. We discovered that both DHODH and Glutathione peroxidase 4 (GPX4) protected cells from hypoxic death by inhibiting lipid peroxidation, mitochondrial reactive oxygen species (ROS) and maintaining mitochondrial membrane potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!