Purpose: To introduce a widely applicable workflow for pulmonary lobe segmentation of MR images using a recurrent neural network (RNN) trained with chest CT datasets. The feasibility is demonstrated for 2D coronal ultrafast balanced SSFP (ufSSFP) MRI.

Methods: Lung lobes of 250 publicly accessible CT datasets of adults were segmented with an open-source CT-specific algorithm. To match 2D ufSSFP MRI data of pediatric patients, both CT data and segmentations were translated into pseudo-MR images that were masked to suppress anatomy outside the lung. Network-1 was trained with pseudo-MR images and lobe segmentations and then applied to 1000 masked ufSSFP images to predict lobe segmentations. These outputs were directly used as targets to train Network-2 and Network-3 with non-masked ufSSFP data as inputs, as well as an additional whole-lung mask as input for Network-2. Network predictions were compared to reference manual lobe segmentations of ufSSFP data in 20 pediatric cystic fibrosis patients. Manual lobe segmentations were performed by splitting available whole-lung segmentations into lobes.

Results: Network-1 was able to segment the lobes of ufSSFP images, and Network-2 and Network-3 further increased segmentation accuracy and robustness. The average all-lobe Dice similarity coefficients were 95.0 ± 2.8 (mean ± pooled SD [%]) and 96.4 ± 2.5, 93.0 ± 2.0; and the average median Hausdorff distances were 6.1 ± 0.9 (mean ± SD [mm]), 5.3 ± 1.1, 7.1 ± 1.3 for Network-1, Network-2, and Network-3, respectively.

Conclusion: Recurrent neural network lung lobe segmentation of 2D ufSSFP imaging is feasible, in good agreement with manual segmentations. The proposed workflow might provide access to automated lobe segmentations for various lung MRI examinations and quantitative analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9314108PMC
http://dx.doi.org/10.1002/mrm.29184DOI Listing

Publication Analysis

Top Keywords

lobe segmentations
20
lobe segmentation
12
recurrent neural
12
neural network
12
network-2 network-3
12
lobe
8
lung lobe
8
pediatric cystic
8
cystic fibrosis
8
fibrosis patients
8

Similar Publications

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

Generation of high-resolution MPRAGE-like images from 3D head MRI localizer (AutoAlign Head) images using a deep learning-based model.

Jpn J Radiol

January 2025

Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.

Purpose: Magnetization prepared rapid gradient echo (MPRAGE) is a useful three-dimensional (3D) T1-weighted sequence, but is not a priority in routine brain examinations. We hypothesized that converting 3D MRI localizer (AutoAlign Head) images to MPRAGE-like images with deep learning (DL) would be beneficial for diagnosing and researching dementia and neurodegenerative diseases. We aimed to establish and evaluate a DL-based model for generating MPRAGE-like images from MRI localizers.

View Article and Find Full Text PDF

Aim: To enhance the understanding of COVID-19 regional lung damage pattern by analyzing the organ in subregions, beyond the typical lobe segmentation.

Materials And Methods: This study used semiautomatic computed tomography (CT) imaging segmentation and quantification to investigate regional lung impairments in patients with COVID-19. Each lung was divided into 12 regions, and the anatomical impairments obtained from the CT image (emphysema, ground glass opacity, and collapsed tissue) were quantified.

View Article and Find Full Text PDF

Robotic-assisted thoracic surgery has become increasingly utilized in recent years. Complex lung cancer resection surgery can be performed using a robotic approach. It facilitates 3-dimentional visualization of structures, enhanced manipulation of tissues and precise movements.

View Article and Find Full Text PDF

The plane running between two adjacent pulmonary segments consists of a very thin layer of connective tissue through which the pulmonary vein also runs. To perform an anatomically correct segmentectomy, this segmental plane needs to be divided. Before the operation, the locations of vessels and bronchi are confirmed by three-dimensional computed tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!