RNA interference (RNAi) is a powerful tool capable of targeting virtually any protein without time-consuming and expensive drug development studies. However, due to obstacles facing efficient and safe delivery, RNAi-based therapeutic approach remains a challenge. Herein, we have designed and synthesized a number of disulfide-constraining cyclic and hybrid peptides using tryptophan and arginine residues. Our hypothesis was that peptide structures would undergo reduction by intracellular glutathione (more abundant in cancer cells) and unpack the small interfering RNA (siRNA) from the peptide/siRNA complexes. A subset of newly developed peptides (specifically, and ) exhibited effective cellular internalization of siRNA (∼70% of the cell population; monitored by flow cytometry and confocal microscopy), the capability of protecting siRNA against early degradation by nucleases (monitored by gel electrophoresis), minimal cytotoxicity in selected cell lines (studied by cell viability and LC calculations), and efficient protein silencing by 70-75% reduction in the expression of targeting signal transducer and activator of transcription 3 (STAT3) in human triple-negative breast cancer (TNBC) MDA-MB-231 cells, analyzed using the Western blot technique. Our results indicate the birth of a promising new family of siRNA delivery systems that are capable of safe and efficient delivery, even in the presence of nucleases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.1c00879 | DOI Listing |
Background: The hyperphosphorylation, mislocalization, and aggregation of the microtubule associated protein Tau (MAPT) is a driving force in tauopathies, a group of progressive, neurodegenerative disorders. These pathogenic intracellular aggregates, known as neurofibrillary tangles (NFTs), are a hallmark in several diseases such as frontotemporal dementia, progressive supranuclear palsy, and Alzheimer's Disease. While anti-Tau immunotherapies emphasize the clearance of extracellular Tau aggregates, they do not address the intracellular accumulation of NFTs.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Engineering Design, Indian Institute of Technology Madras, India.
High throughput intracellular delivery of biological macromolecules is crucial for cell engineering, gene expression, therapeutics, diagnostics, and clinical studies; however, most existing techniques are either contact-based or have throughput limitations. Herein, we report a light-activated, contactless, high throughput photoporation method for highly efficient and viable cell transfection of more than a million cells within a minute. We fabricated reduced graphene oxide (rGO) nanoflakes that was mixed with a polydimethylsiloxane (PDMS) nanocomposite thin sheet with an area of 3 cm and a thickness of ∼600 μm.
View Article and Find Full Text PDFBiomater Res
January 2025
Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 08826, Republic of Korea.
Angiogenesis is mediated by vascular endothelial growth factor (VEGF), a protein that plays a key role in wound healing, inflammatory diseases, cardiovascular processes, ocular diseases, and tumor growth. Indeed, modulation of angiogenesis represents a potential approach to treating cancer and, as such, therapeutic approaches targeting VEGF and its receptors have been widely investigated as part of the broader search for curative interventions. Equally, RNA interference is a powerful tool for treating diseases, but its application as a disease treatment has been limited in part because of a lack of efficient small interfering RNA (siRNA) delivery systems.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India.
Lung cancer continues to be the leading cause of mortality globally. Nanotechnology-mediated targeted drug delivery approach is one of the promising strategies for the treatment of lung cancer. Due to their multifactorial role, mesoporous silica nanoparticles (MSNs), have attracted a lot of attention for drug delivery.
View Article and Find Full Text PDFTheranostics
January 2025
Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality worldwide, particularly due to the limited effectiveness of current therapeutic options for advanced-stage disease. The efficacy of traditional treatments is often compromised by the intricate liver microenvironment and the inherent heterogeneity. RNA-based therapeutics offer a promising alternative, utilizing the innovative approach of targeting aberrant molecular pathways and modulating the tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!