Zinc oxide (ZnO) NPs, owing to their broad biomedical applications, have recently attracted the scientific community with incredible interest as therapeutic agents. So, the present study aims at preparation of ZnO NPs, using Tragia involucrata leaf extract and exploring their capability as antioxidant, anticancer and anti-inflammatory agents. Besides, the ointment formulation and electrochemical studies were also carried out in this work. The antioxidant activity of the synthesized ZnO NPs was evaluated using DPPH assay method and the results clearly showed higher inhibition of about 70% and lower inhibition of about 14% for 100 µg/ml and 25 µg/ml concentrations, respectively. The cytotoxic effects of ZnO NPs were evaluated against human cancer cell lines such as A549 (lungs), HeLa (cervical), HeP-2 (laryngeal) and MCF-7 (breast). The outcome of this investigation confirmed the effectiveness of the synthesized NPs against HeP-2 even at the lowest concentration. The anti-inflammatory activity was measured by the inhibition of protein denaturation assay. A higher inhibition of about 54% was noticed at the concentration of 100 µg/ml. In the case of the ointment formulation study, the pastes prepared using the biosynthesized ZnO NPs and commercially available ZnO powder were compared and evaluated using the parameters such as pH, spreadability, moisture content, extrudability, foamability and physical examinations. As it has been noticed that all the observed parameters were matching well with those of the commercially available ZnO powder, ZnO NPs, synthesized using Tragia involucrata, may be suggested for the clinical trials. Cyclic voltammetry was used to measure the specific capacitance of the synthesized ZnO NPs for different scan rates. The results of this study showed the gradual decrease in specific capacitance value for the corresponding increase in scan rates. Therefore, the results of present study indicated that ZnO NPs prepared using Tragia involucrata leaves were found to be effective for all the above chosen applications and hence, have multifunctional capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-022-03866-z | DOI Listing |
Nanomaterials (Basel)
March 2025
Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Republic of Korea.
Flexible polymer-based piezoelectric nanogenerators (PENGs) have gained significant interest due to their ability to deliver clean and sustainable energy for self-powered electronics and wearable devices. Recently, the incorporation of fillers into the ferroelectric polymer matrix has been used to improve the relatively low piezoelectric properties of polymer-based PENGs. In this study, we investigated the effect of various nanofillers such as titania (TiO), zinc oxide (ZnO), reduced graphene oxide (rGO), and lead zirconate titanate (PZT) on the PENG performance of the nanocomposite thin films containing the nanofillers in poly(vinylidene fluoride-co-trifluoro ethylene) (P(VDF-TrFE)) matrix.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt.
The rise of multidrug-resistant (MDR) bacteria in food products poses a significant threat to public health, necessitating innovative and sustainable antimicrobial solutions. This study investigates the green synthesis of zinc oxide nanoparticles (ZnO-NPs) using extracts to evaluate their antibacterial and antibiofilm activities against MDR strains isolated from sold fish samples. The obtained results show that the contamination with reached 54.
View Article and Find Full Text PDFJ Pharm Bioallied Sci
December 2024
Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.
Introduction: The emergence of antibiotic-resistant pathogenic bacteria has become a major global health concern, with the increasing prevalence of infections that are difficult to treat with conventional antibiotics. As a result, there is a critical need for alternative antimicrobial agents that can effectively control bacterial infections and combat the growing problem of antibiotic resistance.
Materials And Methods: In this study, the antibacterial properties of lemon juice mediated zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) was evaluated against oral pathogens.
J Hazard Mater
February 2025
Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China. Electronic address:
The rising pollution from zinc oxide nanoparticles (ZnO-NPs) poses significant global concerns due to their widespread environmental presence and potential negative effects on human health. This study explores how ZnO-NPs impact migrasomes formation, a crucial process for cellular migration and communication. Our findings indicate that 28 nm ZnO-NPs enhance migrasomes formation, correlating with increased levels of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and GTP-RhoA-essential molecules in migrasomes biogenesis.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
Beyond the von Neumann architecture, neuromorphic computing attracts considerable attention as an energy-efficient computing system for data-centric applications. Among various synapse device candidates, a memtransistor with a three-terminal structure has been considered to be a promising one for artificial synapse with controllable weight update characteristics and strong immunity to disturbance due to decoupled write and read electrode. In this study, oxygen ion exchange-based electrochemical random-access memory consisting of the ZnO channel and CeO nanoparticle (NP) assembly as a gate insulator, also as an ion exchange layer, is proposed and investigated as an artificial synapse device for neuromorphic computing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!