Enhanced photonics devices based on low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (SiN).

Sci Rep

Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02, Innovis Tower, Singapore, 138634, Singapore.

Published: March 2022

Ultra-silicon-rich nitride with refractive indices ~ 3 possesses high nonlinear refractive index-100× higher than stoichiometric silicon nitride and presents absence of two-photon absorption, making it attractive to be used in nonlinear integrated optics at telecommunications wavelengths. Despite its excellent nonlinear properties, ultra-silicon-rich nitride photonics devices reported so far still have fairly low quality factors of [Formula: see text], which could be mainly attributed by the material absorption bonds. Here, we report low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (SiN) with lower material absorption bonds, and ~ 2.5× higher quality factors compared to ultra-silicon-rich nitride conventionally prepared with silane-based chemistry. This material is found to be highly rich in silicon with refractive indices of ~ 3.12 at telecommunications wavelengths and atomic concentration ratio Si:N of ~ 8:1. The material morphology, surface roughness and binding energies are also investigated. Optically, the material absorption bonds are quantified and show an overall reduction. Ring resonators fabricated exhibit improved intrinsic quality factors [Formula: see text], ~ 2.5× higher compared to conventional silane-based ultra-silicon-rich nitride films. This enhanced quality factor from plasma-deposited dichlorosilane-based ultra-silicon-rich nitride signifies better photonics device performance using these films. A pathway has been opened up for further improved device performance of ultra-silicon-rich nitride photonics devices at material level tailored by choice of different chemistries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960789PMC
http://dx.doi.org/10.1038/s41598-022-09227-4DOI Listing

Publication Analysis

Top Keywords

ultra-silicon-rich nitride
32
photonics devices
12
plasma-deposited dichlorosilane-based
12
dichlorosilane-based ultra-silicon-rich
12
quality factors
12
material absorption
12
absorption bonds
12
nitride
9
low temperature
8
temperature plasma-deposited
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!