Birds exhibit wide variation in their use of aquatic environments, on a spectrum from entirely terrestrial, through amphibious, to highly aquatic. Although there are limited empirical data on hearing sensitivity of birds underwater, mounting evidence indicates that diving birds detect and respond to sound underwater, suggesting that some modifications of the ear may assist foraging or other behaviors below the surface. In air, the tympanic middle ear acts as an impedance matcher that increases sound pressure and decreases sound vibration velocity between the outside air and the inner ear. Underwater, the impedance-matching task is reversed and the ear is exposed to high hydrostatic pressures. Using micro- and nano-CT (computerized tomography) scans of bird ears in 127 species across 26 taxonomic orders, we measured a suite of morphological traits of importance to aerial and aquatic hearing to test predictions relating to impedance-matching in birds with distinct aquatic lifestyles, while accounting for allometry and phylogeny. Birds that engage in underwater pursuit and deep diving showed the greatest differences in ear structure relative to terrestrial species. In these heavily modified ears, the size of the input areas of both the tympanic membrane and the columella footplate of the middle ear were reduced. Underwater pursuit and diving birds also typically had a shorter extrastapedius, a reduced cranial air volume and connectivity and several modifications in line with reversals of low-to-high impedance-matching. The results confirm adaptations of the middle ear to aquatic lifestyles in multiple independent bird lineages, likely facilitating hearing underwater and baroprotection, while potentially constraining the sensitivity of aerial hearing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8960762 | PMC |
http://dx.doi.org/10.1038/s41598-022-09090-3 | DOI Listing |
Otol Neurotol
February 2025
Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Hospital, Baltimore, MD.
Objective: The physician-scientist workforce is shrinking in the United States. Academic otologists/neurotologists face a diverse set of barriers to successful careers. We aimed to characterize the factors affecting contemporary otology/neurotology surgeon-scientists.
View Article and Find Full Text PDFOtol Neurotol
February 2025
Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
Background Introduction: Vestibular schwannoma (VS) tumors typically present with sensorineural hearing loss (SNHL). Losartan has recently demonstrated prevention of tumor-associated SNHL in a mouse model of VS through suppression of inflammatory and pro-fibrotic factors, and the current study investigates this association in humans.
Methods: This is a retrospective study of patients with unilateral VS and hypertension followed with sequential audiometry at a tertiary referral hospital from January 1994 to June 2023.
Cureus
December 2024
Department of Otolaryngology, Head and Neck Surgery, General Hospital of Athens "Georgios Gennimatas", Athens, GRC.
Objective: This study aims to present a case of temporal bone (TBP) paraganglioma with an insidious clinical presentation, deviating significantly from the typical hearing loss and pulsatile tinnitus pattern.
Methods: A 70-year-old lady presented to the emergency department with a five-day history of right progressive later cervical swelling extending to the mastoid region and chronic worsening purulent otorrhea. The clinical and radiological findings confirmed the presence of a chronic middle ear process complicated by a Bezold abscess.
J Biomech Eng
January 2025
School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Ave, Norman, OK 73019, USA.
Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Department of Audiology and Prevention of Communication Disorders, All India Institute of Speech and Hearing, Mysuru, Karnataka, India.
Background: Although Cochlear implantation (CI) is effective in restoring hearing for children with severe-to-profound sensorineural hearing loss, it may influence the middle ear mechanics, potentially causing an air-bone gap and altering middle ear stiffness, which is not detected by traditional 226 Hz tympanometry.
Aims/objectives: To investigate the effect of mastoidectomy posterior tympanotomy (MPTA) on wideband absorbance (WBA) in children with CI.
Materials And Methods: The study included 20 normal-hearing children (normal group) and 10 children with CIs who underwent MPTA (CI-MPTA group), aged 3-10 years.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!