Objective: The main objective of this study was to evaluate the glucosyltransferase activity of C. difficile TcdB on the activity of human PMNs.
Methods: To better understand the interaction between PMNs and TcdB, PMNs were treated with sub-lethal concentrations of TcdB. We evaluated: (i) the glucosylation of GTPases, (ii) the phagocytic and bactericidal activity, and (iii) PMNs activation (through quantification of TNF-α, IL-8, and expression of CD11b cell surface activation marker).
Results: We found that TcdB did not glucosylate RhoA and Rac1 GTPases and did not affect the phagocytic or bactericidal capacity of PMNs. Moreover, TcdB did not increase the production of TNF-α, IL-8, or the expression of activation marker CD11b. The only significant effect of TcdB on PMNs was the partial inhibition of TNF-α and IL-8 production and the diminished expression of CD11b induced by E. coli-LPS.
Conclusion: Our results show that human PMNs are resistant to TcdB GTPase glucosyltransferase activity against RhoA and Rac1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.anaerobe.2022.102553 | DOI Listing |
New Microbiol
January 2021
Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Calzada de Tlalpan 4800, Col. Sección XVI, CP 14080, Ciudad de México, México.
Cervical lymph node tuberculosis (LNTB) is the most common manifestation of extrapulmonary tuberculosis, resulting from the interaction of environmental and genetic factors. The immune response against TB is regulated by several cytokines, which have single nucleotide polymorphisms (SNPs), leading to different levels of expression. The aim of this study was to evaluate the association of LNTB with the TNF, IL8, IL10, IL12B and IFNG gene polymorphisms in Mexican patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!