Background: Backgrounding (BKG), the stage between weaning and finishing, significantly impacts feedlot performance in beef cattle; however, the contributions of the rumen microbiome to this growth stage remain unexplored. A longitudinal study was designed to assess how BKG affects rumen bacterial communities and average daily gain (ADG) in beef cattle. At weaning, 38 calves were randomly assigned to three BKG systems for 55 days (d): a high roughage diet within a dry lot (DL, n = 13); annual cover crop within a strip plot (CC, n = 13); and perennial pasture vegetation within rotational paddocks (PP, n = 12), as before weaning. After BKG, all calves were placed in a feedlot for 142 d and finished with a high energy ration. Calves were weighed periodically from weaning to finishing to determine ADG. Rumen bacterial communities were profiled by collecting fluid samples via oral probe and sequencing the V4 region of the 16S rRNA bacterial gene, at weaning, during BKG and finishing.
Results: Rumen bacterial communities diverged drastically among calves once they were placed in each BKG system, including sharp decreases in alpha diversity for CC and DL calves only (P < 0.001). During BKG, DL calves showed a substantial increase of Proteobacteria (Succinivibrionaceae family) (P < 0.001), which also corresponded with greater ADG (P < 0.05). At the finishing stage, Proteobacteria bloomed for all calves, with no previous alpha or beta diversity differences being retained between groups. However, at finishing, PP calves showed a compensatory ADG, particularly greater than that in calves coming from DL BKG (P = 0.02). Microbiome network traits such as lower average shortest path length, and increased neighbor connectivity, degree, number and strength of bacterial interactions between rumen bacteria better predicted ADG during BKG and finishing than variation in specific taxonomic profiles.
Conclusions: Bacterial co-abundance interactions, as measured by network theory approaches, better predicted growth performance in beef cattle during BKG and finishing, than the abundance of specific taxa. These findings underscore the importance of early post weaning stages as potential targets for feeding interventions that can enhance metabolic interactions between rumen bacteria, to increase productive performance in beef cattle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8961956 | PMC |
http://dx.doi.org/10.1186/s42523-022-00175-y | DOI Listing |
Sci Rep
January 2025
Department of Agriculture, Women's University in Africa, 549 Arcturus Road, Harare, Zimbabwe.
The objective of the study was to determine the efficacy of white wormwood on helminthes in beef cattle production. Water extracts of white wormwood of different levels of phytotoxicity were used to treat female adult H. contortus over 8 h under controlled laboratory conditions.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
Effective management of brucellosis in human populations is closely tied to controlling the disease in domestic livestock. This study focused on identifying determinants of brucellosis prevalence in mixed industrial dairy and beef cattle farms within Isfahan Province, Iran. Employing a case control design, we compared 32 ranches with documented brucellosis within the previous year (12 months) to 38 farms with no brucellosis during the same timeframe.
View Article and Find Full Text PDFNPJ Sci Food
January 2025
College of Agriculture, Yabian University, Yanji, 133002, China.
To investigate the anti-inflammatory effects of collagen peptides, collagen peptides from cod skin were prepared to assess their in vitro anti-inflammatory effects and in vivo efficacy against ulcerative colitis. The results show that collagen peptides demonstrated anti-inflammatory effects by inhibiting the secretion of pro-inflammatory cytokines and reducing oxidative stress in vitro. In vivo, collagen peptides significantly reduced colonic tissue damage, modulated serum cytokine balance, increased the expression of tight junction proteins ZO-1, Occludin, and Claudin-1 in colon tissue, enhanced the abundance of beneficial bacteria while reducing harmful bacteria, and restored microbial balance.
View Article and Find Full Text PDFBiol Direct
December 2024
Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
Background: Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging.
Methods: We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML).
Vet Clin North Am Food Anim Pract
December 2024
Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!