Transgenesis in parasitic helminths: a brief history and prospects for the future.

Parasit Vectors

Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.

Published: March 2022

Helminth infections impact the health of hundreds of millions of persons globally and also cause important economic losses in livestock farming. Methodological limitations as well as the low attention given to the study of helminths have impacted biological research and, thus, the procurement of accurate diagnosis and effective treatments. Understanding the biology of helminths using genomic and proteomic approaches could contribute to advances in understanding host-helminth interactions and lead to new vaccines, drugs and diagnostics. Despite the significant advances in genomics in the last decade, the lack of methodological adaptation of current transgenesis techniques has hampered the progression of post-genomic research in helminthology. However, the application of new techniques, such as CRISPR, to the study of trematodes and nematodes has opened new avenues for genome editing-powered functional genomics for these pathogens. This review summarises the historical advances in functional genomics in parasitic helminths and highlights pending limitations that will need to be overcome to deploy transgenesis tools.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8962113PMC
http://dx.doi.org/10.1186/s13071-022-05211-zDOI Listing

Publication Analysis

Top Keywords

parasitic helminths
8
functional genomics
8
transgenesis parasitic
4
helminths
4
helminths history
4
history prospects
4
prospects future
4
future helminth
4
helminth infections
4
infections impact
4

Similar Publications

Twenty-seven Pachycrocuta brevirostris coprolites from Taurida Cave (Early Pleistocene) were studied. Eggs of parasitic worms were found in 6 of them (22.2%).

View Article and Find Full Text PDF

Purpose: Flotation methods are widely used to detect oocysts/cysts of protozoans and eggs of helminths, except trematodes. However, details regarding the concentration and recovery rates of these parasites are poorly understood.

Methods: Using Eimeria tenella oocysts as a model parasite, the present study evaluated three check points: (1) the proportion of parasites that remain floating in flotation solution (sucrose or saturated saline) during centrifugation, (2) the proportion of oocysts that naturally float after addition of flotation solution after centrifugation, and (3) the rate of recovery on cover slips after completion of the flotation protocol.

View Article and Find Full Text PDF

What's Eating You? Hookworm and Cutaneous Larva Migrans.

Cutis

November 2024

Dr. Bloomquist is from the School of Medicine, University of South Carolina, Columbia. Dr. Elston is from the Department of Dermatology & Dermatologic Surgery, Medical University of South Carolina, Charleston.

Hookworm infection represents a major global disease burden, in terms of both morbidity and economic impact, and there has been a resurgence of hookworms in developed nations where these parasites were once thought to be eradicated. Hookworms can infest humans or other mammals as their primary hosts depending on the species. The 2 most common species that seek human hosts-Necator americanus and Ancylostoma duodenale-enter the body through the epidermis, and hookworm infection may manifest as a pruritic and papular inflammatory reaction know as ground itch.

View Article and Find Full Text PDF

Background: Diagnosis of soil-transmitted helminthiasis and schistosomiasis for surveillance relies on microscopic detection of ova in Kato-Katz (KK) prepared slides. Artificial intelligence (AI)-based platforms for parasitic eggs may be developed using a robust image set with defined labels by reference microscopists. This study aimed to determine interobserver variability among reference microscopists in identifying parasite ova.

View Article and Find Full Text PDF

Our understanding of type 2 immunity has undergone a substantial transformation in recent years, revealing previously unknown functions. Beyond its canonical role in defence against parasitic helminth infections, type 2 immunity safeguards the host through additional mechanisms, including the suppression of excessive type 1 immune responses, regulation of tissue repair and maintenance of adipose tissue homeostasis. However, unlike type 1 immune responses, type 2 immunity is perceived as a potential promoter of tumorigenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!