Widely used, short 16S rRNA mitochondrial gene fragments yield poor and erratic results in phylogenetic estimation and species delimitation of amphibians.

BMC Ecol Evol

Department of Ecology and Evolutionary Biology, Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Dyche Hall, Lawrence, KS, 66045, USA.

Published: March 2022

Background: The 16S mitochondrial rRNA gene is the most widely sequenced molecular marker in amphibian systematic studies, making it comparable to the universal CO1 barcode that is more commonly used in other animal groups. However, studies employ different primer combinations that target different lengths/regions of the 16S gene ranging from complete gene sequences (~ 1500 bp) to short fragments (~ 500 bp), the latter of which is the most ubiquitously used. Sequences of different lengths are often concatenated, compared, and/or jointly analyzed to infer phylogenetic relationships, estimate genetic divergence (p-distances), and justify the recognition of new species (species delimitation), making the 16S gene region, by far, the most influential molecular marker in amphibian systematics. Despite their ubiquitous and multifarious use, no studies have ever been conducted to evaluate the congruence and performance among the different fragment lengths.

Results: Using empirical data derived from both Sanger-based and genomic approaches, we show that full-length 16S sequences recover the most accurate phylogenetic relationships, highest branch support, lowest variation in genetic distances (pairwise p-distances), and best-scoring species delimitation partitions. In contrast, widely used short fragments produce inaccurate phylogenetic reconstructions, lower and more variable branch support, erratic genetic distances, and low-scoring species delimitation partitions, the numbers of which are vastly overestimated. The relatively poor performance of short 16S fragments is likely due to insufficient phylogenetic information content.

Conclusions: Taken together, our results demonstrate that short 16S fragments are unable to match the efficacy achieved by full-length sequences in terms of topological accuracy, heuristic branch support, genetic divergences, and species delimitation partitions, and thus, phylogenetic and taxonomic inferences that are predicated on short 16S fragments should be interpreted with caution. However, short 16S fragments can still be useful for species identification, rapid assessments, or definitively coupling complex life stages in natural history studies and faunal inventories. While the full 16S sequence performs best, it requires the use of several primer pairs that increases cost, time, and effort. As a compromise, our results demonstrate that practitioners should utilize medium-length primers in favor of the short-fragment primers because they have the potential to markedly improve phylogenetic inference and species delimitation without additional cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8959075PMC
http://dx.doi.org/10.1186/s12862-022-01994-yDOI Listing

Publication Analysis

Top Keywords

species delimitation
24
short 16s
20
16s fragments
16
branch support
12
delimitation partitions
12
16s
9
species
8
molecular marker
8
marker amphibian
8
16s gene
8

Similar Publications

Transcriptomic studies have become an essential tool to understand the response of yeast to stimuli. The present work analyses the reaction of eight Saccharomyces cerevisiae strains with varying competitive abilities against a competitor (CR85, Saccharomyces kudriavzevii) in co-cultured fermentations. RNA sequencing (RNAseq) was performed at three very early time points after strains coinoculation in fermentation to delimit exactly when S.

View Article and Find Full Text PDF

Speciation studies in the genomic era.

Yi Chuan

January 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.

Since Darwin's era, speciation has been one of the most central issues in evolutionary biology studies. Understanding the processes of species origin is crucial in deepening our understanding of the formation of species biodiversity, which is essential for their protections. However, speciation research has been challenging due to the rather complex evolutionary histories of many extant species.

View Article and Find Full Text PDF

Pollen Diversity in the Tribe Cardueae (Asteraceae) and Its Taxonomic Significance.

Microsc Res Tech

January 2025

Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.

The Cardueae with about 74 genera and 2500 species is one of the largest tribes of the family Asteraceae. The taxonomy of the Cardueae is complicated and unresolved, as it contains the largest and most diverse genera. The main distribution centers of the Cardueae are in the eastern and western Mediterranean, the western Irano-Turanian region, central Asia, and North Africa.

View Article and Find Full Text PDF

Background: Phaius Lour. (Collabieae, Orchidaceae) is a small genus consisting of about 45 species, with highly ornamental and medicinal values. However, the phylogenetic relationship of Phaius among Calanthe s.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!