F-Actin Dysplasia Involved in Organ of Corti Deformity in Knockdown Mouse Model.

Front Mol Neurosci

Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Published: March 2022

Mutations in the gene encoding connexin26 (Cx26) protein are one of the most common causes of hereditary deafness. Previous studies have found that different Cx26-null mouse models have severe hearing loss and deformity of the organ of Corti (OC) as well as a reduction in microtubules in pillar cells (PCs). To explore the underlying mechanism of OC deformity caused by Cx26 downregulation further, we established Cx26 knockdown (KD) mouse models at postnatal days (P)0 and P8. The actin filaments contained in the pillar cells of mice in the P0 KD group were reduced by 54.85% and vinculin was increased by 22%, while the outer hair cells (OHCs) showed normal F-actin content. In the P8 KD group, PCs and OHCs of mice also showed almost normal F-actin content. The G-actin/F-actin ratio increased by 38% in the P0 KD group. No significant change was found in the mRNA or protein expression level of G-actin or the cadherin-catenin core complex in the P0 KD group at P6. Moreover, immunofluorescence showed that the intensity of LRRK2 was reduced by 97% in the P0 KD group at P6. Our results indicate that Cx26 is involved in the maturation of the cytoskeleton during the development of the OC at the early postnatal stage. The polymerization of G-actin into F-actin is prevented in Cx26 KD mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8957075PMC
http://dx.doi.org/10.3389/fnmol.2021.808553DOI Listing

Publication Analysis

Top Keywords

organ corti
8
knockdown mouse
8
mouse models
8
pillar cells
8
normal f-actin
8
f-actin content
8
cx26
5
group
5
f-actin
4
f-actin dysplasia
4

Similar Publications

Hearing loss is highly related to acoustic injuries and mechanical damage of ear tissues. The mechanical responses of ear tissues are difficult to measure experimentally, especially cochlear hair cells within the organ of Corti (OC) at microscale. Finite element (FE) modeling has become an important tool for simulating acoustic wave transmission and studying cochlear mechanics.

View Article and Find Full Text PDF

AAVR Expression is Essential for AAV Vector Transduction in Sensory Hair Cells.

Adv Sci (Weinh)

January 2025

Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China.

Adeno-associated virus (AAV) vectors are a leading platform for gene therapy. Recently, AAV-mediated gene therapy in the inner ear has progressed from laboratory use to clinical trials, but the lower transduction rates in outer hair cells (OHCs) in the organ of Corti and in vestibular hair cells in adult mice still pose a challenge. OHCs are particularly vulnerable to inner ear insults.

View Article and Find Full Text PDF

Hearing loss (HL) is the most common disorder in newborns with a highly heterogeneous genetic background. Despite significant progress in screening and identifying genes related to congenital hearing loss, there are still candidate genes implicated in HL that remain undiscovered. We investigated HL in 43 Chinese families by segregating bilateral sensorineural HL via whole-exome sequencing (WES) and Sanger sequencing.

View Article and Find Full Text PDF

Mutations in the gene cause the most common form of human hereditary hearing loss, known as DFNB1. is expressed in two cell groups of the cochlea-epithelial cells of the organ of Corti and fibrocytes of the inner sulcus and lateral wall-but not by sensory hair cells or neurons. Attempts to treat mouse models of DFNB1 with AAV vectors mediating nonspecific expression have not substantially restored function, perhaps because inappropriate expression in hair cells and neurons could compromise their electrical activity.

View Article and Find Full Text PDF

Background: Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!