A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous thermoosmotic and thermoelectric responses in nanoconfined electrolyte solutions: Effects of nanopore structures and membrane properties. | LitMetric

Simultaneous thermoosmotic and thermoelectric responses in nanoconfined electrolyte solutions: Effects of nanopore structures and membrane properties.

J Colloid Interface Sci

MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China. Electronic address:

Published: July 2022

Hypothesis: Nanofluidic systems provide an emerging and efficient platform for thermoelectric conversion and fluid pumping with low-grade heat energy. As a basis of their performance enhancement, the effects of the structures and properties of the nanofluidic systems on the thermoelectric response (TER) and the thermoosmotic response (TOR) are yet to be explored.

Methods: The simultaneous TER and TOR of electrolyte solutions in nanofluidic membrane pores on which an axial temperature gradient is exerted are investigated numerically and semi-analytically. A semi-analytical model is developed with the consideration of finite membrane thermal conductivity and the reservoir/entrance effect.

Findings: The increase in the access resistance due to the nanopore-reservoir interfaces accounts for the decrease of short circuit current at the low concentration regime. The decrease in the thermal conductivity ratio can enhance the TER and TOR. The maximum power density occurring at the nanopore radius twice the Debye length ranges from several to dozens of mW K m and is an order of magnitude higher than typical thermo-supercapacitors. The surface charge polarity can heavily affect the sign and magnitude of the short-circuit current, the Seebeck coefficient and the open-circuit thermoosmotic coefficient, but has less effect on the short-circuit thermoosmotic coefficient. Furthermore, the membrane thickness makes different impacts on TER and TOR for zero and finite membrane thermal conductivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.03.079DOI Listing

Publication Analysis

Top Keywords

ter tor
12
thermal conductivity
12
electrolyte solutions
8
nanofluidic systems
8
finite membrane
8
membrane thermal
8
thermoosmotic coefficient
8
membrane
5
simultaneous thermoosmotic
4
thermoosmotic thermoelectric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!