Dynamic changes of macrophage activation in mice infected with Trichinella spiralis.

Int Immunopharmacol

Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:

Published: July 2022

Trichinellosis is a serious food-borne parasitic zoonosis worldwide. Different host macrophage subsets play various roles during helminth infection; however, the dynamic changes in macrophage subsets following Trichinella spiralis infection have not been reported. Here, flow cytometry and immunofluorescence were used to assess macrophage activation in mesenteric lymph nodes (MLN), spleen, intestine, and muscle from T. spiralis-infected mice at 1, 5, 15, and 30 days post infection (dpi). Macrophages in the intestine, MLN, and spleen tended to be activated M1-type at 1 and 5 dpi, while at 15 dpi, M2-type macrophages started to become a major constituent of the spleen macrophage population, and in the intestine and MLN, macrophages were primarily mixed M1 and M2 type. At 30 dpi, macrophages in the intestine, muscle, MLN, and spleen were all mainly activated M2 cells. Additionally, mouse macrophages were cleared and the adult T. spiralis load were determined to evaluate the impact of macrophages on adult parasite expulsion. The results suggested that predominantly M1 macrophages contribute to adult T. spiralis expulsion in the enteral stage of infection. At the newborn larvae migration stage, M2 macrophage-mediated immunity had a weak scavenging effect on adults, but primarily promoted tissue repair and assisted muscle larva immune escape. Our study reveals further details of the interaction between T. spiralis and the host immune system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.108716DOI Listing

Publication Analysis

Top Keywords

mln spleen
12
dynamic changes
8
changes macrophage
8
macrophage activation
8
trichinella spiralis
8
macrophage subsets
8
intestine muscle
8
dpi macrophages
8
macrophages intestine
8
intestine mln
8

Similar Publications

use multiple mechanisms to disseminate from the intestinal lamina propria to the mesenteric lymph nodes.

Microbiol Spectr

December 2024

Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA.

Unlabelled: are facultative intracellular bacterial pathogens that cause foodborne disease in humans. The bacteria can use the surface protein InlA to invade intestinal epithelial cells or transcytose across M cells in the gut, but it is not well understood how the bacteria traffic from the underlying lamina propria to the draining mesenteric lymph nodes (MLN). Previous studies indicated that associated with both monocytes and dendritic cells in the intestinal lamina propria.

View Article and Find Full Text PDF

Transfer RNA-derived fragment production in calves challenged with or co-infected with bovine viral diarrhea virus and in several tissues and blood.

Front Vet Sci

November 2024

Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.

Understanding the molecular mechanisms underlying immune response can allow informed decisions in drug or vaccine development, and aid in the identification of biomarkers to predict exposure or evaluate treatment efficacy. The objective of this study was to identify differentially expressed transfer RNA-derived fragments (tRFs) in calves challenged with () or co-infected with and bovine viral diarrhea virus (BVDV). Serum, white blood cells (WBC), liver, mesenteric lymph node (MLN), tracheal-bronchial lymph node (TBLN), spleen, and thymus were collected from Control ( = 2), (MB;  = 3), and co-infected (Dual; = 3) animals, and small RNAs extracted for sequencing.

View Article and Find Full Text PDF

Nitric oxide-producing monocyte-myeloid suppressor cells expand and accumulate in the spleen and mesenteric lymph nodes of -infected mice.

Front Cell Infect Microbiol

November 2024

División de Inmunología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina.

Introduction: (Ye) is a Gram-negative bacterium that causes gastrointestinal infections. The myeloid-derived suppressor cells (MDSCs) constitute a cellular population with the capacity of inducing the specific suppression of T cells. Although there is evidence supporting the role of MDSCs in controlling the immune responses in several bacterial infections, its role during Ye infection has not yet been reported.

View Article and Find Full Text PDF

Background: The T cell-mediated delayed-type hypersensitivity (DTH) response is critical for elucidating cellular immune mechanisms, especially the role of memory T cells upon antigen re-exposure. This study aimed to investigate the specific effects of the immunosuppressive drugs Cyclophosphamide (CY) and Dexamethasone (DEX) on intestinal immunity and microbiota in a DTH mouse model, contributing to a more nuanced understanding of their immunomodulatory mechanisms.

Methods: Female BALB/c mice were sensitized to 2,4-dinitrofluorobenzene (DNFB) and randomly allocated into control, CY, and DEX groups.

View Article and Find Full Text PDF

Generation and evaluation of Salmonella entericaserovar Choleraesuis mutant strains as a potential live-attenuated vaccine.

Vaccine

October 2024

State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China. Electronic address:

Background: Salmonella entericaserovar Choleraesuis (S.C) is a swine enteric pathogen causing paratyphoid fever, enterocolitis, and septicemia in piglets. S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!