AI Article Synopsis

  • A preliminary analysis of the virome in wild sika deer in Japan discovered a new parvovirus closely related to existing strains but only 44.7-60.7% genetically similar.
  • The virus was found in 15% of the 206 sika deer sampled across 7 prefectures, with prevalence rates varying significantly by region, ranging from 0% to 66.7%.
  • The higher rates of the virus in southern Japan may be linked to factors like deer population density and the presence of ticks, which could facilitate virus transmission.

Article Abstract

A preliminary metagenomic analysis of the virome of wild sika deer (Cervus nippon) blood in Japan resulted in the identification of a novel parvovirus. The virus was closest, but only 44.7-60.7% identical to 17 reported strains belonging to the genus Copiparvovirus within the subfamily Parvovirinae, over the near-entire genomic sequence. The sika deer copiparvovirus DNA was detected in 15% (31/206) of sika deer captured in 7 prefectures of Japan, and a region-dependent prevalence of 0-66.7% was noted, with a biased distribution in the southern part of Japan. The observed biased distribution of sika deer copiparvovirus may be due to the habitat density of deer and the number of ticks, which might play a role in the transmission of the virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virusres.2022.198749DOI Listing

Publication Analysis

Top Keywords

sika deer
20
wild sika
8
deer cervus
8
cervus nippon
8
deer copiparvovirus
8
biased distribution
8
deer
6
sika
5
genomic characterization
4
characterization prevalence
4

Similar Publications

The rumen microbiota plays a vital role in the nutrient metabolism affecting the growth of velvet antler. However, the fermentation patterns and dynamics of the rumen microbiota across growth stages of velvet antler remain largely unexplored. Here, we employed an fermentation approach to assess fermentation parameters and microbial composition in the rumen liquid of sika deer during the early growth (EG), metaphase growth (MG), and fast growth (FG) phases .

View Article and Find Full Text PDF

Diversity and Multiple Infections of in Red Deer and Deer Keds.

Pathogens

December 2024

Department of Parasitology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic.

Bartonellae are zoonotic pathogens with a broad range of reservoir hosts and vectors. To examine sylvatic reservoirs, tissue samples of red deer (, = 114) and their associated deer keds (, = 50; , = 272) collected in the Czech Republic were tested for the presence of using PCR at four loci (, , , ITS); PCR sensitivity was increased significantly by using primers modified for the detection of wildlife-associated bartonellae. One-third of the deer and 70% of the deer keds were positive; within the tested animal tissues, usually the spleen was positive.

View Article and Find Full Text PDF

Characteristics and Differences in the Antler Velvet Microbiota During Regeneration.

Microorganisms

December 2024

Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.

The skin surface has a complex and dynamic ecosystem inhabited by a diverse microbiota. The wound formed by antler velvet shedding can naturally achieve regenerative restoration, but the changes in microbial composition that occur during antler velvet regeneration are largely unknown. In this study, we analyzed the antler velvet microbiota of sika deer at 15 days (Half) and 30 days (Full) post-pedicle casting using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Deer oil (DO) is a potentially beneficial functional oil; however, its sensitivity to environmental factors (e.g., oxygen and heat), difficulty in transport, and unfavorable taste hinder practical use.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The interplay between the intestinal microbiota and metabolites is believed to influence brain function and the pathogenesis of neurodegenerative conditions through the microbe-gut-brain axis. Sika deer antler protein possesses neuroprotective properties; however, the precise mechanism by which it improves AD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!