Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: Medical laboratory performance is a relative concept, as are quality and safety in medicine. Therefore, repetitive benchmarking appears to be essential for sustainable improvement in health care. The general idea in this approach is to establish a reference level, upon which improvement may be strived for and quantified. While the laboratory community traditionally is highly aware of the need for laboratory performance and public scrutiny is more intense than ever due to the SARS-CoV-2 pandemic, few initiatives span the globe. The aim of this study was to establish a good practice approach towards benchmarking on a high abstraction level for three key dimensions of medical laboratory performance, generate a tentative snapshot of the current state of the art in the region of Europe, Middle East, and Africa (EMEA), and thus set the stage for global follow-up studies.
Methods: The questionnaire used and previously published in this initiative consisted of 50 items, roughly half relating to laboratory operations in general with the other half addressing more specific topics. An international sample of laboratories from EMEA was approached to elicit high fidelity responses with the help of trained professionals. Individual item results were analyzed using standard descriptive statistics. Dimensional reduction of specific items was performed using exploratory factor analysis and assessed with confirmatory factor analysis, resulting in individual laboratory scores for the three subscales of "Operational performance", "Integrated clinical care performance", and "Financial sustainability".
Results: Altogether, 773 laboratories participated in the survey, of which 484 were government hospital laboratories, 129 private hospital laboratories, 146 commercial laboratories, and 14 were other types of laboratories (e.g. research laboratories). Respondents indicated the need for digitalization (e.g. use of IT for order management, auto-validation), automation (e.g. pre-analytics, automated sample transportation), and establishment of formal quality management systems (e.g. ISO 15189, ISO 9001) as well as sustainably embedding them in the fabric of laboratory operations. Considerable room for growth also exists for services provided to physicians, such as "Diagnostic pathways guidance", "Proactive consultation on complex cases", and "Real time decision support" which were provided by less than two thirds of laboratories. Concordantly, the most important kind of turn-around time (TAT) for clinicians, sample-to-result TAT, was monitored by only 40% of respondents.
Conclusions: Altogether, the need for stronger integration of laboratories into the clinical care process became apparent and should be a main trajectory of future laboratory management. Factor analysis confirmed the theoretical constructs of the questionnaire design phase, resulting in a reasonably valid tool for further benchmarking activities on the three aimed-for key dimensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/cclm-2021-1349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!