Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface-plasmon-mediated phenylacetylide intermediate transfer from the Cu to the Pd surface affords a novel mechanism for transmetalation, enabling wavelength-tunable cross-coupling and homo-coupling reaction pathway control. C-C bond forming Sonogashira coupling and Glaser coupling reactions in O atmosphere are efficiently driven by visible light over heterogeneous Cu and Pd nanoparticles as a mixed catalyst without base or other additives. The reaction pathway can be controlled by switching the excitation wavelength. Shorter wavelengths (400-500 nm) give the Glaser homo-coupling diyne, whereas longer wavelength irradiation (500-940 nm) significantly increases the degree of cross-coupling Sonogashira coupling products. The ratio of the activated intermediates of alkyne to the iodobenzene is wavelength dependent and this regulates transmetalation. This wavelength-tunable reaction pathway is a novel way to optimize the product selectivity in important organic syntheses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325502 | PMC |
http://dx.doi.org/10.1002/anie.202203158 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!