Biochemical reactions and biological processes can be best understood by demonstrating how proteins transition among their functional states. Since cryogenic temperatures are non-physiological and may prevent, deter, or even alter protein structural dynamics, a robust method for routine X-ray diffraction experiments at room temperature is highly desirable. The crystal-on-crystal device and its accompanying hardware and software used in this protocol are designed to enable in situ X-ray diffraction at room temperature for protein crystals of different sizes without any sample manipulation. Here we present the protocols for the key steps from device assembly, on-chip crystallization, optical scanning, crystal recognition to X-ray shot planning and automated data collection. Since this platform requires no crystal harvesting nor any other sample manipulation, hundreds to thousands of protein crystals grown on chip can be introduced into an X-ray beam in a programmable and high-throughput manner.

Download full-text PDF

Source
http://dx.doi.org/10.3791/63022DOI Listing

Publication Analysis

Top Keywords

room temperature
12
on-chip crystallization
8
diffraction room
8
x-ray diffraction
8
protein crystals
8
sample manipulation
8
crystallization large-scale
4
large-scale serial
4
serial diffraction
4
temperature biochemical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!