β2-microglobulin (B2M) and Janus kinases 1 and 2 (JAK1/2) mutations have been suggested as genetic mechanisms of immune evasion for anti-programmed cell death protein 1 (PD-1) therapy. Whether B2M and JAK1/2 lose-of-function mutation can cause primary resistance to anti-PD-1 therapy in colorectal carcinoma (CRC) patients remains controversial. Here, we sought to compare the efficacy of anti-PD-1 therapy in DNA mismatch repair deficient/microsatellite instability-high CRC patients with or without B2M or JAK1/2 mutations. Thirty-Five CRC patients who received anti-PD-1 therapy were enrolled in this study. All tumor samples underwent next-generation sequencing. The clinical and molecular data from 110 CRC patients sequenced with the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) assay and accessed through cBioportal were also analyzed in this study. Of the 35 CRC patients from our center, 10 (28.6%) had a B2M loss-of-function mutation, and 8 (22.9%) had a JAK1/2 loss-of-function mutation. Compared with B2M wild-type CRCs, B2M-mutated CRCs did not show a higher frequency of resistance to anti-PD-1 therapy (P=0.71). There was even better response to anti-PD-1 therapy in patients with JAK1/2 mutation than in those without (P=0.015). Of the 110 CRC patients in the MSK-IMPACT datasets, 13 (11.8%) had a B2M mutation, and 15 (13.6%) had a JAK1/2 mutation. After analyzing the response to anti-PD-1 therapy in these 110 patients, we found similar results (P=0.438 and 0.071, respectively). Moreover, patients with B2M or JAK1/2 mutation had a lower tumor mutational burden score compared with those without. B2M and JAK1/2 loss-of-function mutations occur frequently in microsatellite instability-high CRC. Our study demonstrated that patients with CRC harboring B2M or JAK1/2 mutations should not be excluded from anti-PD-1 therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986629PMC
http://dx.doi.org/10.1097/CJI.0000000000000417DOI Listing

Publication Analysis

Top Keywords

anti-pd-1 therapy
32
crc patients
24
b2m jak1/2
20
jak1/2 mutations
12
jak1/2 mutation
12
b2m
10
patients
10
therapy
9
jak1/2
9
anti-pd-1
8

Similar Publications

Background: Inflammation and immune evasion are associated with tumorigenesis and progression. The Systemic Inflammation Response Index (SIRI) has been proposed as a pre-treatment peripheral blood biomarker. This study aims to compare the relationship between SIRI, various serum biomarkers, and the prognosis of NSCLC patients before and after treatment.

View Article and Find Full Text PDF

The antitumor efficacy of an intratumoral injection of a genetically engineered oncolytic vaccinia virus carrying human IL-7 and murine IL-12 genes (hIL-7/mIL-12-VV) was demonstrated in CT26.WT-bearing mice. In the CT26.

View Article and Find Full Text PDF

Neoadjuvant immunotherapies have shown antitumor activity in melanoma. Substudy 02C of the global, rolling-arm, phase 1/2, adaptive-design KEYMAKER-U02 trial is evaluating neoadjuvant pembrolizumab (anti-PD-1) alone or in combination, followed by adjuvant pembrolizumab, for stage IIIB-D melanoma. Here we report results from the first three arms: pembrolizumab plus vibostolimab (anti-TIGIT), pembrolizumab plus gebasaxturev (coxsackievirus A21) and pembrolizumab monotherapy.

View Article and Find Full Text PDF

Background: The transmembrane protein T-cell immunoglobulin and mucin-domain containing molecule 3 (TIM-3) is an immune checkpoint receptor that is expressed by a variety of leukocyte subsets, particularly in the tumor microenvironment. An effective TIM-3-targeting therapy should account for multiple biological factors, including the disease setting, the specific cell types involved and their varying sensitivities to the four putative TIM-3 ligands (galectin-9, phosphatidylserine, high mobility group protein B1 and carcinoembryonic antigen cell adhesion molecule 1), each of which engages a unique binding site on the receptor's variable immunoglobulin domain. The primary objectives of this study were to assess the prevalence and function of TIM-3 natural killer (NK) cells in patients with head and neck squamous cell carcinoma (HNSCC), determine whether the four TIM-3 ligands differentially affect TIM-3 NK cell functions, identify the most immunosuppressive ligand, and evaluate whether targeting ligand-mediated TIM-3 signaling enhances NK cell effector functions.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV)-driven cancers include head and neck squamous cell carcinoma and cervical cancer and represent approximately 5% of all cancer cases worldwide. Standard-of-care chemotherapy, radiotherapy, and immune checkpoint inhibitors (ICIs) are associated with adverse effects and limited responses in patients with HPV-driven cancers. The integration of targeted therapies with ICIs may improve outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!