The use of smart and advanced composite materials instead of conventional metals is foreseen in material sciences due to the development of novel manufacturing techniques. In this regard, a novel type of composite materials "functionally graded materials (FGM)" has attained great attention owing to their intrinsic mechanical characteristics. FGM have been the focus for researchers for analytical formulation, static structural (large deformation, material nonlinearity) analysis as well as for dynamic analysis on simple beams and on structure having non-uniform tapered rectangular profile considering different boundary conditions. No focus is made to thin structure having non-uniform circular cross-sections. This study aims to deal with analyzing the "dynamic behavior of thin circular non-uniform truncated conical section" which is mostly used for manufacturing of fishing rod. This works primarily compares the static, modal, and harmonic analysis under the application of loads of 50 N acting on fishing rod made up of conventional steel, composite (carbon fiber) steel, and functionally graded material (FGM) with the help of ANSYS. Firstly, static analysis performed to analyze the structural behavior under the application of static loadings. After that modal analysis performed and first five modes selected for Steel; from 0 to 600 Hz, for Carbon Fiber; from 0 to 850 Hz and for FGM; from 0 to 900 Hz for harmonic analysis. Maximum defection at resonance for steel is 7.94 mm, for composite is 74.4 mm, and for FGM is just 0.032 mm. The comparison of these results clearly depicts that FGM is having excellent vibration suppression performance as compared to other two materials under consideration. This confirms that thin structure (non-uniform circular profile) made of FGM can be used efficiently for the intended applications in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/22808000221089774 | DOI Listing |
J Physiol
January 2025
Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.
Bipolar cells are vertebrate retinal interneurons conveying signals from rod and cone photoreceptors to amacrine and ganglion cells. Bipolar cells are found in all vertebrates and have many structural and molecular affinities with photoreceptors; they probably appeared very early during vertebrate evolution in conjunction with rod and cone progenitors. There are two types of bipolar cells, responding to central illumination with depolarization (ON) or hyperpolarization (OFF).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology and Stein Eye Institute, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
December 2024
School of Biological Sciences, University of Auckland, Auckland, New Zealand.
A Gram-stain-negative, non-spore-forming, rod-shaped, obligately anaerobic bacterium, designated strain BP47G, was isolated from the hindgut of a silver drummer () fish collected from the Hauraki Gulf, New Zealand. Phylogenetic analysis based on the 16S rRNA gene sequence of the isolate indicated that it belonged to the family in the phylum . The gene sequence of BP47G was most similar to with 95.
View Article and Find Full Text PDFZootaxa
November 2024
Department of Ichthyology; American Museum of Natural History; 200 Central Park West; New York; NY 10024; USA.
A new genus of dactylogyrid, Peruanella n. gen., is proposed to accommodate Peruanella madredediosensis n.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!