The cost of reproduction plays a central role in evolutionary theory, but the identity of the underlying mechanisms remains a puzzle. Oxidative stress has been hypothesized to be a proximate mechanism that may explain the cost of reproduction. We examine three pathways by which oxidative stress could shape reproduction. The "oxidative cost" hypothesis proposes that reproductive effort generates oxidative stress, while the "oxidative constraint" and "oxidative shielding" hypotheses suggest that mothers mitigate such costs through reducing reproductive effort or by pre-emptively decreasing damage levels, respectively. We tested these three mechanisms using data from a long-term food provisioning experiment on wild female banded mongooses (). Our results show that maternal supplementation did not influence oxidative stress levels, or the production and survival of offspring. However, we found that two of the oxidative mechanisms co-occur during reproduction. There was evidence of an oxidative challenge associated with reproduction that mothers attempted to mitigate by reducing damage levels during breeding. This mitigation is likely to be of crucial importance, as long-term offspring survival was negatively impacted by maternal oxidative stress. This study demonstrates the value of longitudinal studies of wild animals in order to highlight the interconnected oxidative mechanisms that shape the cost of reproduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8928901PMC
http://dx.doi.org/10.1002/ece3.8644DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
cost reproduction
16
banded mongooses
8
oxidative
8
reproductive effort
8
damage levels
8
oxidative mechanisms
8
reproduction
7
stress
5
untangling oxidative
4

Similar Publications

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Avian pathogenic Escherichia coli (APEC) is a significant pathogen infecting poultry that is responsible for high mortality, morbidity and severe economic losses to the poultry industry globally, posing a substantial risk to the health of poultry. APEC encounters reactive oxygen species (ROS) during the infection process and thus has evolved antioxidant defense mechanisms to protect against oxidative damage. The imbalance of ROS production and antioxidant defenses is known as oxidative stress, which results in oxidative damage to proteins, lipids and DNA, and even bacterial cell death.

View Article and Find Full Text PDF

HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation.

Mol Med

December 2024

Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.

Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.

View Article and Find Full Text PDF

ALDH2 Plays a Role in Spermatogenesis and Male Fertility by Regulating Oxidative Stress in Mice.

Exp Cell Res

December 2024

School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Qingdao, 266237, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250100, China. Electronic address:

Spermatogenesis and sperm maturation are complex biological processes that involve intricate cellular and molecular interactions. The Aldh2 gene is involved in the metabolism of specific aldehydes generated by oxidative stress. Aldh2 is abundantly expressed in the testis and epididymis; however, the specific role of Aldh2 in regulating spermatogenesis and sperm maturation remains unclear.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!