Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Biomarkers, as measurements of defined biological characteristics, can play a pivotal role in estimations of disease risk, early detection, differential diagnosis, assessment of disease progression and outcomes prediction. Studies of cancer biomarkers are published daily; some are well characterized, while others are of growing interest. Managing this flow of information is challenging for scientists and clinicians. We sought to develop a novel text-mining method employing biomarker co-occurrence processing applied to a deeply indexed full-text database to generate time-interval-delimited biomarker co-occurrence networks. Biomarkers across 6 cancer sites and a cancer-agnostic network were successfully characterized in terms of their emergence in the published literature and the context in which they are described. Our approach, which enables us to find publications based on biomarker relationships, identified biomarker relationships not known to existing interaction networks. This search method finds relevant literature that could be missed with keyword searches, even if full text is available. It enables users to extract relevant biological information and may provide new biological insights that could not be achieved by individual review of papers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8943609 | PMC |
http://dx.doi.org/10.1177/11769351221086441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!