A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RBF network-based adaptive sliding mode control strategy for the tendon-sheath driven joint of a prosthetic hand. | LitMetric

Background: The complex in-hand manipulation puts forward higher requirements for the dexterity and joint control accuracy of the prosthetic hand. The tendon-sheath drive has important application potential in the fields of prosthetic hand to obtain higher dexterity. However, the existing control methods of tendon-sheath driven joint are mainly open-loop compensation based on friction model, which makes it difficult to achieve high-precision joint control.

Objective: The purpose of this work is to improve the position control accuracy of the tendon-sheath driven joint for the prosthetic hand.

Methods: The structure of the prosthetic hand is introduced, and the encoder and potentiometer are mounted on the driving motor and joint respectively. Then, the transfer function of the joint is established based on the dynamic model. The adaptive sliding mode control strategy based on RBF network is applied to realize the closed-loop feedback position control of the prosthetic hand joint. The stability of the system is demonstrated by Lyapunov theorem.

Results: Under the condition of constant and variable sheath curvature, the effectiveness of the controller is demonstrated by simulation and joint motion experiments, respectively. The results show that the closed-loop control has better position tracking ability than the open-loop control, and the designed controller can reduce the tracking error more obviously than the traditional algorithm. The high-precision position control can be realized by designing the controller based on the joint angle feedback.

Conclusions: The research content has certain theoretical and practical significance for the development of joint high-precision control of tendon-sheath driven prosthetic hand. This is beneficial to the implementation of complex in-hand manipulation for prosthetic hand.

Download full-text PDF

Source
http://dx.doi.org/10.3233/THC-213242DOI Listing

Publication Analysis

Top Keywords

prosthetic hand
28
tendon-sheath driven
16
driven joint
12
position control
12
joint
11
control
10
adaptive sliding
8
sliding mode
8
mode control
8
control strategy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!