Protective effect of flavonoids extract of Hippophae rhamnoides L. on alcoholic fatty liver disease through regulating intestinal flora and inhibiting TAK1/p38MAPK/p65NF-κB pathway.

J Ethnopharmacol

College of Pharmacy, Jiamusi University, Jiamusi, 154007, Heilongjiang, PR China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, PR China. Electronic address:

Published: June 2022

Ethnopharmacological Relevance: The therapeutic properties of Hippophae rhamnoides L. were already known in ancient Greece as well as in Tibetan and Mongolian medicine. Modern studies have indicated that Hippophae rhamnoides L. fermentation liquid protected against alcoholic fatty liver disease (AFLD). However, the underlying mechanism of Hippophae rhamnoides L. flavonoids extract (HLF) treating AFLD remains elusive.

Aim Of The Study: This study aimed to investigate the hepatoprotective effect of HLF in mice with AFLD and the interaction between AFLD and gut microbiota.

Materials And Methods: Chemical constituents of HLF were analyzed by Liquid Chromatography-Ion Trap-ESI-Mass Spectrometry. The Hepatoprotective effect of HLF was evaluated in mice with AFLD induced by alcohol (six groups, n = 10) daily at doses of 0.1, 0.2, and 0.4 g/kg for 30 consecutive days. At the end of experiment, mice were sacrificed and the liver, serum and feces were harvested for analysis. The liver histological changes were observed by H&E staining and oil red O staining. Moreover, the alterations of fecal microflora were detected by 16S rRNA gene sequencing. The inflammatory related genes were determined by qRT-PCR and western blotting respectively.

Results: The results showed that the oral administration of HLF remarkably alleviated hepatic lipid accumulation by decreasing the levels of ALT, AST, TG and TC. The levels of TNF-α, TGF-β, and IL-6 were also reduced after treatment with HLF. Meanwhile, the protein and mRNA expression of NF-kB p65, MAPK p38 and TAK-1 in the liver of mice with AFLD were all reduced by HLF compared with model group. Furthermore, the 16S rRNA gene sequencing analysis demonstrated that HLF treatment can help restore the imbalance of intestinal microbial ecosystem and reverse the changes in Fimicutes/Bacterodietes, Clostridiales, Lachnospiraceae, S24-7, and Prevotella in mice with AFLD.

Conclusion: HLF can effectively ameliorate liver injury in mice with AFLD, and regulate the composition of gut microbiota. Its regulatory mechanism may be related to TAK1/p38MAPK/p65NF-κB pathway. This study may provide novel insights into the mechanism of HLF on AFLD and a basis for promising clinical usage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2022.115225DOI Listing

Publication Analysis

Top Keywords

hippophae rhamnoides
16
mice afld
16
hlf
10
flavonoids extract
8
alcoholic fatty
8
fatty liver
8
liver disease
8
tak1/p38mapk/p65nf-κb pathway
8
afld
8
hepatoprotective hlf
8

Similar Publications

The elemental dynamics and interactions within deadwood profoundly influence carbon sequestration and nutrient cycling in forest ecosystems. Recent studies have investigated macronutrient cycling during deadwood decay of specific plants, yet the dynamics and interactions of micronutrients, trace elements, and the elementome across species and decay stages remain unexplored. Here, we investigated the elementome and their coupling relationships across five decay stages of downed deadwood (DDW) from four dominant species (Hippophae rhamnoides, Populus purdomii, Abies fabri, and Picea brachytyla) along the Hailuogou Glacier primary successional chronosequence.

View Article and Find Full Text PDF

Vegetation restoration can be effective in containing gully head advance. However, the effect of vegetation restoration type on soil aggregate stability and erosion resistance at the head of the gully is unclear. In this study, five types of vegetation restoration-Pinus tabulaeformis (PT), Prunus sibirica (PS), Caragana korshinskii (CKS), Hippophae rhamnoides (HR), and natural grassland (NG, the dominant species is Leymus chinensis)-in the gully head were studied.

View Article and Find Full Text PDF

[Impact of climate change on the potential geographical distribution of subsp. ].

Ying Yong Sheng Tai Xue Bao

October 2024

Ningxia Helan Mountain National Nature Reserve Administration, Yinchuan 750021, China.

subsp. is an important resource plant with considerable medicinal, economic, and ecological value, and an indicator species in the transition zones between forests and grasslands. Predicting the potential geographic distribution of subsp.

View Article and Find Full Text PDF

Shrub encroachment can alter the structure and function of grassland ecosystems, leading to their degradation. Therefore, population regeneration dynamics after shrub encroachment on the influence of grassland should not be ignored. , as a pioneer species, has significantly encroached with large areas on the Qinghai-Tibetan Plateau (QTP) due to climate change and over-grazing.

View Article and Find Full Text PDF

Development of sex-specific molecular markers for early sex identification in Hippophae gyantsensis based on whole-genome resequencing.

BMC Plant Biol

December 2024

Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, China.

Hippophae gyantsensis is a dioecious plant endemic to the Qinghai-Tibet Plateau and is significant for ecological restoration and sand stabilization. Its fruit is rich in bioactive compounds that offer economic potential. However, the inability to distinguish sexes before flowering and prolonged maturation hinder breeding and cultivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!