Cardiac hypertrophy occurs as a result of high levels of thyroid hormone, which may contribute to heart failure and is closely related to oxidative stress. Hydrogen is a good antioxidant. In this study, we found that intragastric levothyroxine administration for two weeks caused obvious cardiac hypertrophy without reduced systolic function. Additionally, hydrogen inhalation ameliorated the levothyroxine-induced metabolic increase and cardiac hypertrophy in rats. Serum brain natriuretic peptide expression was also attenuated by hydrogen treatment. However, hydrogen had no significant effect on levothyroxine -induced serum troponin I and serum thyroid hormone changes. Hydrogen treatment also reduced the levothyroxine-induced increase in cardiac malondialdehyde, 8-hydroxy-2-deoxyguanosine and serum hydrogen peroxide levels and upregulated superoxide dismutase and glutathione peroxidase activity. Additionally, western blotting results showed that hydrogen inhalation inhibited the expression of cardiac nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), angiotensin II type 1 receptor, sarcoplasmic reticulum Ca-ATPase (SERCA2), phospho-phospholamban and α-myosin heavy chain proteins. In conclusion, the present study revealed a protective effect of hydrogen on levothyroxine -induced cardiac hypertrophy by regulating angiotensin II type 1 receptors and NOX2-mediated oxidative stress in rats.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2022.174917DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
20
angiotensin type
12
oxidative stress
12
hydrogen
9
hypertrophy rats
8
regulating angiotensin
8
type receptor
8
thyroid hormone
8
hydrogen inhalation
8
increase cardiac
8

Similar Publications

The influence of the mitochondrial control system on ischemic heart disease has become a major focus of current research. Mitophagy, as a very crucial part of the mitochondrial control system, plays a special role in ischemic heart disease, unlike mitochondrial dynamics. The published reviews have not explored in detail the unique function of mitophagy in ischemic heart disease, therefore, the aim of this paper is to summarize how mitophagy regulates the progression of ischemic heart disease.

View Article and Find Full Text PDF

Echocardiography-guided percutaneous intramyocardial septal radiofrequency ablation procedure for the treatment of Fabry disease: a case report.

Eur Heart J Case Rep

January 2025

Xijing Hypertrophic Cardiomyopathy Center, Department of Ultrasound, Xijing Hospital, Airforce Military Medical University, Xi'an, Shaanxi 710032, China.

Background: This is a case report of a patient with Fabry disease (FD). We successfully treated a patient with ventricular septal hypertrophy and left ventricular outflow tract (LVOT) obstruction caused by FD. We report our exclusive new surgery for patients with LVOT obstruction, percutaneous intramyocardial septal radiofrequency ablation (PIMSRA) procedure™ (percutaneous intramyocardial septal radiofrequency ablation).

View Article and Find Full Text PDF

VPO1 Promotes Programmed Necrosis of Cardiomyocytes in Rats with Chronic Heart Failure by Upregulating CYLD.

Front Biosci (Landmark Ed)

December 2024

Department of Cardiovascular Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, 410008 Changsha, Hunan, China.

Background: Chronic heart failure (CHF) is a serious cardiovascular condition. Vascular peroxidase 1 (VPO1) is associated with various cardiovascular diseases, yet its role in CHF remains unclear. This research aims to explore the involvement of VPO1 in CHF.

View Article and Find Full Text PDF

KLF2-dependent transcriptional regulation safeguards the heart against pathological hypertrophy.

J Mol Cell Cardiol

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:

Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.

Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.

View Article and Find Full Text PDF

Background: Microcardia and cardiomegaly are good diagnostic and prognostic tools for several diseases. This study investigated the distribution of microcardia and cardiomegaly among students of the University of Health and Allied Sciences (UHAS) in Ghana to determine the prevalence of microcardia and cardiomegaly across gender, and to evaluate the correlation between the presence of these heart conditions and age.

Methods: This retrospective study involved a review of 4519 postero-anterior (PA) chest X-rays (CXRs) between 2020 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!