Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Amyotrophic lateral sclerosis (ALS) is known to represent a collection of overlapping syndromes. Various classification systems based on empirical observations have been proposed, but it is unclear to what extent they reflect ALS population substructures. We aimed to use machine-learning techniques to identify the number and nature of ALS subtypes to obtain a better understanding of this heterogeneity, enhance our understanding of the disease, and improve clinical care.
Methods: In this retrospective study, we applied unsupervised Uniform Manifold Approximation and Projection [UMAP]) modelling, semi-supervised (neural network UMAP) modelling, and supervised (ensemble learning based on LightGBM) modelling to a population-based discovery cohort of patients who were diagnosed with ALS while living in the Piedmont and Valle d'Aosta regions of Italy, for whom detailed clinical data, such as age at symptom onset, were available. We excluded patients with missing Revised ALS Functional Rating Scale (ALSFRS-R) feature values from the unsupervised and semi-supervised steps. We replicated our findings in an independent population-based cohort of patients who were diagnosed with ALS while living in the Emilia Romagna region of Italy.
Findings: Between Jan 1, 1995, and Dec 31, 2015, 2858 patients were entered in the discovery cohort. After excluding 497 (17%) patients with missing ALSFRS-R feature values, data for 42 clinical features across 2361 (83%) patients were available for the unsupervised and semi-supervised analysis. We found that semi-supervised machine learning produced the optimum clustering of the patients with ALS. These clusters roughly corresponded to the six clinical subtypes defined by the Chiò classification system (ie, bulbar, respiratory, flail arm, classical, pyramidal, and flail leg ALS). Between Jan 1, 2009, and March 1, 2018, 1097 patients were entered in the replication cohort. After excluding 108 (10%) patients with missing ALSFRS-R feature values, data for 42 clinical features across 989 patients were available for the unsupervised and semi-supervised analysis. All 1097 patients were included in the supervised analysis. The same clusters were identified in the replication cohort. By contrast, other ALS classification schemes, such as the El Escorial categories, Milano-Torino clinical staging, and King's clinical stages, did not adequately label the clusters. Supervised learning identified 11 clinical parameters that predicted ALS clinical subtypes with high accuracy (area under the curve 0·982 [95% CI 0·980-0·983]).
Interpretation: Our data-driven study provides insight into the ALS population substructure and confirms that the Chiò classification system successfully identifies ALS subtypes. Additional validation is required to determine the accuracy and clinical use of these algorithms in assigning clinical subtypes. Nevertheless, our algorithms offer a broad insight into the clinical heterogeneity of ALS and help to determine the actual subtypes of disease that exist within this fatal neurodegenerative syndrome. The systematic identification of ALS subtypes will improve clinical care and clinical trial design.
Funding: US National Institute on Aging, US National Institutes of Health, Italian Ministry of Health, European Commission, University of Torino Rita Levi Montalcini Department of Neurosciences, Emilia Romagna Regional Health Authority, and Italian Ministry of Education, University, and Research.
Translations: For the Italian and German translations of the abstract see Supplementary Materials section.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038712 | PMC |
http://dx.doi.org/10.1016/S2589-7500(21)00274-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!